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Abstract: A large sampling effort is required to produce an accurate geostatistical map, and the extraction 
and analysis of each sample is often expensive. The effectiveness of a particular sampling scheme is 
dependent upon the spatial variability of the quantity being measured. This spatial variability is unknown 
when sampling commences and therefore conventional, single phase, sampling schemes are often inefficient. 
Adaptive schemes sample in several phases, the design of later phases incorporating information about the 
spatial variability derived from earlier phases.  The authors compare the precision of variogram estimates 
from an adaptive scheme with those from a conventional transect method.  The adaptive scheme selects 
sampling points that minimize an approximation to the variogram uncertainty. Although this approximation 
is biased, it is a suitable relative measure for optimizing the sampling scheme. The precision attained by a 
100 point transect scheme is matched by an 80 point adaptive scheme when estimating both long- and short-
range variograms from simulated data. 
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1. INTRODUCTION 

1.1. Motivation 

Geostatistical analysis is a powerful technique for 
interpolating the distribution of a spatial variable, 
such as the concentration of an ore, pollutant or 
soil nutrient, over a region. It not only yields 
expected values of the variable across the region 
but also assigns a level of uncertainty to the 
estimate at each point (Burgess and Webster, 
1980). Thus informed decisions can be made as to 
whether the extraction of the ore is viable or the 
pollutant should be cleaned up. A disadvantage of 
geostatistics is the large sampling effort required 
(Webster and Oliver, 1992). This can make an 
accurate geostatistical survey very costly to 
complete. Therefore methods of improving 
sampling efficiency, in terms of the number of 
sampling points required to achieve a certain 
precision of estimate, are of great value to 
practitioners in a number of different application 
areas.        

Traditionally, sampling for geostatistical analysis 
is carried out in a single phase. The positions of 
the sample points may be chosen based upon the 
investigator’s intuition and experience of 
sampling similar environments. Often, however, 
the sampling scheme will be designed with 
convenience in mind, without considering the 

specific properties of the variable being measured 
and the resulting effects upon the usefulness of 
the sampling scheme.  

Standard geostatistical analysis is split into two 
parts. The values recorded at the sampling 
locations are first used to determine the structure 
of the spatial correlation. This information is 
presented as a variogram which is then used in a 
process known as kriging to interpolate values of 
the variable at unsampled locations within the 
field (Burgess and Webster, 1980). 

The effectiveness of a sampling scheme, for both 
variogram estimation and kriging, is highly 
dependent upon the actual spatial correlation 
(Webster and Oliver, 2001, Chapter 5). If the 
variable is only correlated over a short range then 
there is little to gain from investigating the level 
of variation over much longer lag distances. 
Therefore, the sampling scheme should contain a 
large proportion of closely spaced pairs in order 
to derive the nature of the short-range variation. 
Conversely, widely spaced sampling points are 
required for a variable with a long range of spatial 
correlation in order to determine the nature of the 
variation up to this range. The uncertainty of the 
kriged estimates of the variable are determined by 
both the sampling scheme and the spatial 
variability of the variable (Webster and Oliver, 
2001, Chapter 8). 



The characteristics of the variogram are not 
known before sampling commences, so it is not 
possible to design an efficient sampling scheme at 
this stage. In this paper we discuss the potential 
for using phased or adaptive sampling schemes. 
By dividing the sampling process into distinct 
phases it is possible to use the information 
derived from earlier phases to aid the choice of 
sampling positions in later phases. Thus the 
sampling scheme can be optimized in a manner 
that reflects the properties of the variable under 
investigation.      

1.2. Previous studies 

The majority of previous studies of iterative 
procedures for spatial sampling have concentrated 
upon kriging rather than variogram estimation. 
McBratney et al. (1981) showed that once the 
variogram has been estimated it is possible to 
design the most cost-effective sampling grid for 
kriging, generating a map that meets precision 
requirements without oversampling. Van 
Groenigen et al. (1997) demonstrated the 
usefulness of a phased sampling scheme. Having 
calculated an initial kriged estimate of the 
variable they assessed the uncertainty of the 
estimate across the region. Further sampling 
phases concentrated upon the locations where the 
risk of error was greatest. 

Optimal sampling schemes for kriging generally 
minimize the kriging variance in some manner. 
This variance is calculated as a by-product of the 
kriging procedure. Similarly, when the variogram 
is calculated by a maximum likelihood method, a 
measure of the uncertainty associated with the 
variogram estimate is generated. Lark (2002) 
designed sampling schemes that minimized this 
uncertainly. The variogram is more commonly 
calculated by the method of moments.  There is 
not a generally accepted expression for the 
uncertainty of variograms estimated by this 
method. 

Strategies for optimizing sampling schemes for 
the method of moments, have primarily been 
guided by common sense ‘rules of thumb’ rather 
than direct minimization of a measure of the 
variogram uncertainty. For example, Warrick and 
Myers (1987) generated sampling schemes where 
the distribution of the distances between pairs of 
sampling points conformed to a prescribed 
distribution. Thus they ensured that the level of 
variability of the variable was measured over a 
range of different lag distances. This method is 
somewhat unsatisfactory. It does not account for 
how the ideal distribution of separation distances 
varies according to the actual variogram, nor does 

it ensure that the information obtained from 
different lag pairs is not itself highly correlated.  

Recent studies have attempted to identify more 
rigorous criterion to optimize sampling schemes 
for variogram estimation (Bogaert and Russo, 
1999; Muller and Zimmermann, 1999). However, 
the expressions used to determine variogram 
uncertainty in these studies are largely untested. 

1.3. Overview of paper 

The aim of this paper is to demonstrate the 
potential for using iterative sampling schemes. As 
an illustrative example we concentrate upon the 
estimation of the variogram by the method of 
moments.   

The method of moments procedure is described in 
Section 2, and Section 3 discusses how a 
sampling scheme may be optimized for this 
purpose.  Section 4 describes the development of 
an iterative sampling scheme for use in the field. 
The scheme is tested upon simulated data in 
Section 5. 

 

2. ESTIMATING THE VARIOGRAM BY 
METHOD OF MOMENTS 

The variogram expresses the variance of the 
difference between two observations of the 
variable as a function of the distance that 
separates them. It is most commonly estimated by 
the method of moments. This procedure has two 
parts. First the average variogram values for 
different separation distances are calculated 
directly from the data. This results in the 
experimental variogram. Then a mathematical 
function is fitted to this experimental variogram.  

2.1. The experimental variogram 

The experimental variogram is calculated by 
allocating the pairs of sampling points to different 
bins based upon their separation distance. The 
estimate of the variogram at separation distance 

is then given by (Webster and Oliver, 2001, 
Chapter 5): 
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located then the bins may have to be extended to 
contain pairs separated by plus or minus some 
tolerance. The experimental variogram is 
presented as a plot of 
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2.2. Fitting a variogram model 

The variogram must be expressed as a 
mathematical function before being used for 
kriging. This is typically achieved by fitting a 
suitable function to the experimental variogram. 
Authorized functions are described by Webster 
and Oliver (2001, Chapter 6). Each function is 
defined in terms of a small number of parameters 
that are selected to best-fit the function to the 
experimental variogram. In this study we use the 
spherical function which is defined by: 
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This function is expressed in terms of three 
parameters, namely; the range of spatial 
correlation,  the nugget effect and  the sill 
value.  
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A number of different methods exist for selecting 
values for these parameters. Some practitioners 
do so by eye, plotting variogram functions with 
different parameter values on top of the 
experimental variogram and then selecting the 
best match. Cressie (1985) describes three 
mathematical techniques for fitting the parameter 
values. Herein we favour the more rigorous 
generalized least squares (GLS) for fitting the 
parameter values. The GLS technique also 
accounts for the accuracy of each point of the 
experimental variogram estimate, and the 
correlation between each point.    

3.  OPTIMISING SAMPLING SCHEMES 
FOR VARIOGRAM ESTIMATION 

3.1. Choosing a fitness function 

In order to optimize a sampling scheme it is 
necessary to have some fitness function that the 
optimal scheme minimizes. For example, when 
designing a sampling scheme for kriging, 
McBratney et al. (1981) suggested minimizing the 
kriging variance.  

Recently Pardo-Iguzquiza and Dowd (2001) 
suggested a method by which the uncertainty of 
GLS variogram parameter estimates may be 
approximated. For a known underlying variogram 
function and any particular sampling 

configuration, this technique yields a variance-
covariance matrix of the variogram parameter 
estimates. These formulae are cumbersome and 
are not repeated herein, however, for full details 
of the method see Pardo-Iguzquiza and Dowd 
(2001). 

The Pardo-Iguzquiza and Dowd (2001) method is 
divided into two parts. First the variance-
covariance matrix of the experimental variogram 
estimates is derived. This derivation assumes that 
the variable is multivariate normal. These 
formulae are written in terms of the underlying 
variogram parameters and the procedure 
essentially averages the covariances of the 
variogram estimates from different pairs of 
points. The variance-covariance matrix of the 
fitted parameters is then approximated, to leading 
order, from this matrix.  

A suitable fitness function may be expressed in 
terms of the entries of this matrix. An estimate of 
the underlying variogram is required to calculate 
such a fitness function. This estimate can be 
updated within an iterative scheme. The 
variogram estimate after phase ‘n’ may be used to 
calculate the fitness function for phase ‘n+1’. The 
details of one such sampling scheme are 
described in Section 4.  

The exact choice of fitness function is arbitrary. A 
previous study suggests using the determinant of 
the matrix but the justification is unclear (Muller 
and Zimmermann, 1999). Herein we minimize the 
variance of the estimates of the range parameter 

. This choice is based upon the observation that 
perturbations of the range parameter are the 
primary influence on the configuration of the 
optimal sampling points. Therefore, the iterative 
scheme should operate smoothly if the range 
parameter estimate quickly converges to its actual 
value.      

a

3.2. Spatial simulated annealing      

Spatial simulated annealing (SSA) is a numerical 
technique for obtaining the configuration of 
sample points that minimize the chosen fitness 
function (van Groenigen, 1999). SSA optimizes at 
a point level, incorporating sample points from 
previous phases and honoring sampling 
constraints such as field boundaries, buildings or 
lakes. Thus it is very suitable for optimizing 
iterative sampling schemes. 

The algorithm starts with a random array of new 
sampling points. The value of the fitness function 
is calculated for this initial configuration 
combined with any sampling locations from 
previous sampling phases. Random perturbations 
are applied to the new points in turn. If such a 



perturbation reduces the fitness function it is 
retained. A proportion of the perturbations that 
increase the fitness function are also retained at 
random, to avoid convergence to a local minima. 
The probability of retaining a particular 
perturbation that increases the fitness function is 
controlled by a parameter referred to as the 
temperature. A given increase in the fitness 
function is more likely when the temperature is 
large. As the algorithm progresses the 
temperature and the magnitude of the 
perturbations are reduced. The perturbation loop 
is repeated until either a given value of the fitness 
function is reached or no further reduction in the 
fitness function is being achieved. Full details of 
how to implement a SSA algorithm are given by 
van Groenigen (1999). 

4. AN ITERATIVE SAMPLING SCHEME 

This section describes the stages within an 
adaptive sampling scheme. The algorithms have 
been designed to run on a portable computer in 
the field, within a practical timescale. 

4.1. Survey boundaries and obstacles 

The position of the field boundaries and any 
obstacles where sampling cannot occur (e.g. lakes 
or buildings) are recorded using a GPS system. 
The approximate length and width of the field is 
derived from this data. 

4.2. Initial sampling 

The initial sampling phase occurs upon six 
transects, three of which are perpendicular to the 
other three. These transects are placed randomly 
within the field. Each consists of ten points and 
their length is half the length of the field. 

4.3. Variogram fitting 

The values from the initial phase of sampling are 
recorded, the experimental variogram is 
calculated and a variogram model is fitted by 
GLS. 

4.4. Optimizing further sampling phases 

Each further sampling phase consists of ten 
points. These are chosen using the SSA 
algorithm. The fitness function is the variance of 
‘a’, as predicted by the method of Pardo-
Iguzquiza and Dowd (2001). The variogram 
estimated from the previous sampling phase is 
used to calculate the fitness function for this 
phase. The loop of further sampling and 
variogram fitting is then repeated until the 

variogram uncertainty reaches a prescribed 
tolerance level. 

5. TRIALS UPON SIMULATED DATA 

In theory, the iterative sampling scheme described 
in Section 4 should yield an optimal sampling 
point geometry for variogram estimation and the 
approximate variogram uncertainty. However, 
little testing has been carried out upon the 
variogram uncertainty estimates. Therefore the 
first purpose of the trials upon simulated data is to 
determine the accuracy of these uncertainty 
estimates. Then the effectiveness of the iterative 
sampling scheme is compared to that resulting 
from adding further transects. A spherical 
variogram with 1.00 =c ,  and a 
variable range is used for all simulated examples 
herein.  

9.01 =c

5.1. Assessing variogram uncertainty 

The variogram uncertainty measures were tested 
upon data sets simulated by LU decomposition 
(Deutsch and Journel, 1998). This simulation 
method was chosen because it generates 
multivariate Gaussian spatial variables. Thus the 
resulting simulated data sets should satisfy the 
statistical assumptions made by Pardo-Iguzquiza 
and Dowd (2001). 

Various types of sampling scheme (regular and 
irregular, optimized and unoptimized) were 
trialed. In each case 1000 data sets were 
simulated upon the sampling scheme with a 
particular spherical variogram function. The 
experimental variogram and GLS fitted variogram 
parameters were calculated for each simulation. 
The variance-covariance matrices for both the 
experimental variogram and variogram parameter 
estimates were then compared with those 
predicted by Pardo-Iguzquiza and Dowd (2001). 

The results of these trials were consistent for 
different underlying variograms and sampling 
schemes. In each case the variance-covariance 
matrix of the experimental variogram, resulting 
from simulated data, agreed almost exactly with 
the predicted matrix. This is to be expected since 
the expression for the variance-covariance matrix 
of the experimental variogram contained no 
approximations.  

Pardo-Iguzquiza and Dowd’s (2001) formulae 
also accurately predicted the variance of both the 
fitted nugget and sill parameters (and the 
covariance of the two). In every case however the 
formulae underestimated the variance of the range 
estimate, sometimes by up to four times (Figure 
1). This error presumably results from the leading 



order approximation in the derivation of the 
parameter covariance matrix expression.  

 

Figure 1. Comparison of predicted and simulated 
values for the variance of ‘a’. The prediction 

technique of Pardo-Iguzquiza and Dowd (2001) 
consistently underestimates the variance but the 

predicted value is highly correlated to the 
simulated value. The underlying variogram has 

a=1.0 

Although the predicted variance values for the 
fitted range parameter are underestimated they do 
correlate with the simulated values. Therefore, 
they may be treated as a relative measure of 
variogram uncertainty. 

5.2. Testing the iterative sampling scheme 

The iterative sampling scheme was also tested 
upon data sets created by LU simulation (Deutsch 
and Journel, 1998). Each trial used the field 
boundaries seen in Figure 2. For each test an 
underlying variogram model was chosen. This 
was used to simulate the variable onto the 
transects of the initial sampling phase. A 
variogram model was fitted to this data and a 
further ten sampling points were optimized based 
upon the fitted parameter values. The simulated 
values of the first 60 points were retained and the 
values at the ten new points were generated. Then 
the loop of variogram fitting and optimizing was 
repeated.  

After each sampling phase the effectiveness of the 
resulting sampling configuration was tested by 
generating 1000 realisations of the variable (with 
the underlying variogram structure) at the sample 
points. The variance of the resulting parameter 
estimates was compared to that from an additional 
transect rather than ten optimized points.    

Figure 2 shows the sampling schemes that 
resulted from underlying variograms with short 
(a=5) and long (a=18) range. The sampling 
points for the short-range process are far more 
closely packed than for the long-range process. 

Also, the sample points have been positioned in 
order to minimize the correlation between the 
variogram estimates from different pairs. 

 

Figure 2. Iterative sampling schemes generated 
for underlying variograms with a=5 (top) and 

a=18 (bottom). Clear circles are transect points, 
black dots optimized points. The sampling points 
for the short-range process are far more closely 

packed than the long-range process 

Figure 3 indicates superior performance of the 
iterative scheme, over further transects, for both 
underlying variograms. The precision of 80 point 
adaptive schemes is seen to match that of 100 
points within transects. These findings were 
repeated for all underlying variograms up to a 
range of a=30. At this range the parameter 
estimates from the initial phase became 
unreliable, and the iterative scheme did not 
converge. 

6. CONCLUSIONS 

This paper demonstrates that an iterative sampling 
scheme for variogram estimation can be more 
efficient than a conventional transect sampling 
scheme. Therefore, the use of such a scheme can 
lead to reduced sampling costs and increased 
accuracy of the estimated variogram. These 
results have been obtained from simulated data 
sets. The next stage of this study is to test the 
iterative sampling scheme in the field. 

In the course of designing the iterative scheme, 
expressions for the uncertainty of variogram 
parameter estimates were tested. These 
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