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Abstract:  Soil attributes, including those in mine spoil heaps, critically affect plant growth during land 
rehabilitation. Their characterization through a limited number of samples requires quantification of spatial 
variability, which is then used at various stages throughout the rehabilitation process and assists risk analysis 
and rehabilitation decision making.  Stochastic simulation is a tool used for the quantification of uncertainty. 
This paper presents the suitability of stochastic simulation for the joint simulation of soil attributes and 
introduces a new computationally efficient method. The method is based on: (i) the Minimum/Maximum 
Autocorrelation Factors (MAF), involving the de-correlation of pertinent variables into spatially non-
correlated factors, and (ii) the simulation of MAF and back transformation to the conditional simulations of 
the correlated variables.  MAF factors in point (ii) are simulated using the new Generalised Sequential 
Gaussian Simulation (GSGS) technique which is substantially more efficient that the traditional sequential 
simulation methods.  The formulated approach is applied to mine spoil data, specifically electrical 
conductivity and pH, which typically contribute to restricted plant growth on spoils in Queensland coal 
mines. The results of the simulations are used to quantify risk of exceeding significant thresholds for each 
variable, thereby identifying problem rehabilitation areas. The case study demonstrates the practical aspects 
of the method as well as its use in planning rehabilitation strategies and predictions of future performance of 
the rehabilitation. 

Keywords: Minimum/maximum autocorrelation factors; joint simulations; generalised sequential Gaussian 
simulation, land rehabilitation.  

1. INTRODUCTION   

Soil properties critically influence the decision 
making involved in the development, 
implementation and monitoring of rehabilitation 
programs. As soil properties are only sampled at a 
limited number of locations, the quantitative 
characterization of their distribution and 
variability at any unsampled location is critical. 
The assessment of local uncertainty about 
possible values is a well established issue in soil 
science and environmental engineering (Webster 
and Oliver, 1989; Pachepsky and Acock, 1998; 
Bross et al., 1999) and stochastic simulation is a 
key tool used in modeling this uncertainty (e.g. 
Goovaerts, 2001). However, these issues have 
received little attention to date in relation to the 
rehabilitation of mined land and related concerns 
for plant establishment, survival and long term 
sustainability. Environmental impact mitigation 
and concurrent reclamation are now commonly 
regarded as integral components of the mining 
process (Morrey, 1999). Thus, there is an 
increased need to develop suitable modelling 
frameworks for the prediction of environmental 
changes, and hence the assessment of impacts. 
 

A key issue in modelling soil properties, 
including mine spoil heaps, is that the modelling 
of several commonly correlated properties of soils 
are needed. Properties including alkalinity, 
electrical conductivity, salinity, sodium content, 
nitrate concentrations and phosphates that may 
affect plant success (Grigg et al., 2000) show 
spatial cross-correlations. Techniques to jointly 
simulate spatial distributions of soil attributes are 
available (e.g. Gutjahr et al., 1997) and improve 
the plausibility of resultant models. However, 
they are computationally intensive. Contributors 
to complexity include the tedious inference and 
modelling of cross-correlations and computational 
inefficiencies, both substantially increasing with 
the number of variables being jointly-simulated. 
A practical alternative to the ‘direct’ joint-
simulation of variables is the decorrelation of 
variables introduced using principal component 
analysis or PCA (David, 1988; Wackernagel, 
1995). The effectiveness of this approach, in the 
presence of spatial cross-correlations, is limited 
because PCA does not eliminate cross-
correlations at distances other than zero. To 
overcome the above limitations, 
minimum/maximum autocorrelation factors, 
MAF, (e.g. Desbarats and Dimitrakopoulos, 
2000) are used to de-correlate pertinent variables 



into spatially non-correlated factors that are 
independently simulated and back transformed to 
correlated attributes. The simulations of MAF are 
generated with the new fast generalised sequential 
Gaussian simulation, GSGS,  (Dimitrakopoulos 
and Luo, 2003) to provide a substantially more 
efficient simulation framework.    
 
The following sections will firstly introduce the 
method of joint simulation of multiple correlated 
variables based on MAF.  A description of the 
data available follows together with the results of 
the joint simulation. An application of risk 
analysis is then presented towards assisting with 
rehabilitation strategies followed by conclusions. 

2. JOINT SIMULATION OF 
CORRELATED VARIABLES WITH 
MINIMUM/MAXIMUM 
AUTOCORRELATION FACTORS 

In geostatistical terminology, the attributes of 
elements in soils are represented by a multivariate 
stationary and ergodic random function. Consider 
a multivariate,  dimensional, Gaussian, 
stationary and ergodic spatial random function 

. Minimum/Maximum 
Autocorrelations Factors are defined as the  
orthogonal linear combinations 

 of the original 
multivariate vector Z . MAF are derived 
assuming that  is represented by a two-
structure linear model of coregionalisation 
(Wackernagel, 1995). The MAF transformation 
can be rewritten as 

A

A

,..1

)x

)x(Z

)x(Yi

T(x)]Zx),...,(Z[ 1=

  .,  x),(Z A== iaT
i

x(
(Z

A

)

Y(x) = AMAF Z(x)    (1) 

and the MAF factors are derived from  
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are obtained from the spectral decomposition 
of the multivariate covariance matrix B of  
at zero lag distance. More specifically,  
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and  is the matrix of eigenvectors from the 
spectral decomposition  
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where the matrix  is an asymmetric matrix 
variogram at lag distance ∆ for the regular PCA 
factors Y(x)=Z(x) A, where

)(∆YΓ

QΛA = -1/2. In 

practice, several ∆ lag distances may be used for 
values lower than the range and the resulting 
eigenvectors averaged.  
 
Given the MAF transformation above, the joint 
simulation of multiple correlated variables using 
the MAF approach proceeds as follows: 
 

i. Normalize the variables to be simulated. 
ii. Use MAF to generate the MAF non-

correlated factors. 
iii. Produce variograms for each MAF. 
iv. Conditionally simulate each MAF using a 

Gaussian simulation method. 
v. Validate the simulation of factors. 

vi. Back-transform simulated MAF to variables 
and denormalize. 

vii. Validate the final results. 
viii. Generate additional simulations, as needed. 

 
The conditional simulation of a Gaussian random 
function Y(x) above is based herein on the 
decomposition of the multivariate probability 
density function (PDF) of a stationary and ergodic 
random function  to a product of local conditional 
distributions                     
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where ( )1 1,..., ; ,...,N Nf x x y y is the pdf, N the 
number of points discretising the field to be 
simulated, n the number of available data, and  

ix the location of a point in the space considered. 

Setting , where( )0 , =i y xα αΛ = Λ + 1,...,i ( )y xα  
is a realisation of Y(x) at location xα , and 
considering groups of pN nodes, Eq. (5) is 
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The simulated group of nodes in vector py  is 
then 
 
 1
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where the covariance matrix IIC is the covariance 
between the conditioning nodes, pIC  the 
covariance between the group of nodes to be 



simulated and the conditioning nodes, and ppC  
the covariance between the nodes of the group; 

Iy  is the data vector contained in  and w1i−Λ p a 
standard normal random vector.  The generalised 
sequential Gaussian simulation algorithm (GSGS) 
from Eq. 6, used to simulate the N nodes in a 
domain  is: D
 

i. Define a random path visiting each group of 
pN  nodes to be simulated. 

ii. At each group of nodes, use Eq. (7) to 
generate simulated values and add the values 
to the data set. 

iii. Go to the next group of nodes and repeat the 
previous two steps. 

iv. Loop until all groups of nodes have been 
visited and the N nodes simulated. 

3. THE DATA AVAILABLE   

The data used in this study were sampled from a 
mined waste (spoil) dump of an open cut coal 
mine in Queensland.  They include measurements 
of electrical conductivity (EC), a measure of 
salinity, and pH, a measure of acidity.  

The dataset is composed of 96 sampled locations 
on a regular grid with EC and pH measurements 
in all locations. pH values are converted to 
concentration of hydrogen ions in solution, [H+]. 
These data are characteristic of the conditions 
found in spoil dumps of many Queensland coal 
mines in that they are highly alkaline and highly 
saline. Salinity may be a major impediment to 
plant establishment and survival, while high 
levels of pH limit the availability of phosphorus, 
which in turn limits plant growth and 
sustainability (Grigg et al., 2000). The spatial 

distribution of both variables is shown in Figure 
1. Dark circles represent high values and light 
circles represent low values. The heterogeneous 
nature of the spoil is clearly evident. 

4. JOINT SIMULATION OF SPOIL 
PARAMETERS: EC AND [H+]  

4.1. Normal-score transformation 

Following the simulation steps using MAF 
described earlier, a normal-score transformation is 
performed on the distribution of EC and [H+] 
data. Normal score transformations are based on 
rank ordering of the data and decrease the 
influence of outliers. This, in turn, assists the 
inference of the variogram and estimation of 
covariance matrices in the simulation process that 
follows.  

4.2. MAF transformation 

The transformation matrix AMAF (Eq. 1) used to 
generate the min/max autocorrelation factors is 
shown in Figure 2 (b). MAF are calculated by 
multiplying the vector of EC and [H+] by a vector 
of loadings from the rows of the transformation 

matrix. It should be noted that the MAF loadings 
are quite different from the ones derived by PCA 
(Desbarats and Dimitrakopoulos, 2000). The lag 
∆ in Eq. 4 used in this example is 65 metres and 
was derived experimentally by testing several lag 
distances to assure a suitable decorrelation and 
stable MAF decomposition. Figure 2 (a) shows 
the cross-variogram between MAF from the 
present study and demonstrates variable 
decorrelation. Experimental variograms and 
cross-variograms for EC and [H+] are shown and 
discussed in more detail in a subsequent section.  
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Figure 1.  Measured properties across waste dump at a Queensland coal mine. 
(a)Electrical conductivity and (b) acidity. 
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Figure 2. (a) Cross-variograms of MAF and (b) transformation matrix. 
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Figure 3. Experimental and model variograms of MAF.

4.3. Variography of MAF  4.5. Back transformations of MAF  

Variography on each MAF is performed. Figure 3 
shows the experimental and model variograms 
fitted to the both MAF. Note that variogram 
models for MAF2 are spherical and show clear 
spatial patterns. MAF1 is modeled as pure nugget. 
MAF variograms are subsequently used in the 
simulation of each factor and the validation of the 
MAF simulation results. It should be noted that 
MAF variograms are linear combinations of the 
variograms of the original (normal score) 
variables.  

The realizations of MAF were transformed back 
to simulated normal score variables by 
multiplying a column vector of simulated MAF in 
each grid node with the corresponding inverse 
matrix of the MAF loadings in Figure 2 (b). 
Subsequently, the normal score EC and [H+] 
realizations are back transformed to the data 
space.   

4.6. Validation of the joint EC and [H+] 
simulation results   

Several validation checks are performed to assess 
the results of the joint simulations of EC and [H+] 
using the MAF transformations. Validation 
involves calculation of histograms, experimental 
variograms and cross-variograms of the simulated 
realizations to ensure reproduction of original 
data and their spatial characteristics. 

4.4. Conditional simulation of MAF  

Conditional simulation is performed 
independently on both MAF using the GSGS 
algorithm. The simulations are performed on a 
grid of 5000 nodes within the limits of the waste 
dump. Thirty simulations are generated in this 
study and are validated in detail for reproduction 
of data, histograms and variograms. The 
validation of the MAF simulations is not 
presented here as a subsequent section presents 
the validation of realizations in the data space. 

  
Figure 4 shows plots of variograms and cross-
variograms for the original data and conditional 
simulations. All results suggest that the 
reproduction of the original data spatial 
characteristics by the simulated realizations is 
excellent. Recall that the variograms and cross-
variograms of original variables are not directly 
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Figure 4. Variograms and cross-variograms of simulations 
backtransformed to the data space, compared to 

experimental variograms of original data. 

used in the joint simulation based on MAF, which 
used the variograms of the independent MAF. 

5. RISK ANALYSIS FOR DECISION 
MAKING  

The main objectives of mined land rehabilitation 
include a sustainable land use after mining, 
stability of the land surface, and preservation of 
water quality (Grigg et al., 2000). Currently, there 
are no formal criteria used to assess the success of 
rehabilitated areas for mines. For open cut coal 
mines in Queensland, such as the case study in the 
previous section, suitable completion criteria for 
relinquishment purposes and, more specifically, 
pasture–based rehabilitation in Queensland have 
been established (Grigg et al., 2001). These 
criteria suggest the achievement and maintenance 
of at least 70% vegetation cover because there is 
considerable evidence, from minesite erosion 
research and elsewhere, that vegetation cover is 

the single most important factor affecting soil loss 
in rehabilitated pastures.  
 
Analysis of data from monitoring studies upon 
which rehabilitation criteria were based, indicate 
a strong influence of average salinity (EC) on 
pasture performance, indicated by the amount of 
total dry matter (DM) (Grigg et al., 2001). An 
exponential improvement in DM is evident for 
decreasing salinity levels. The amount of DM is 
also related to ground cover and an exponential 
increase in ground cover is evident with 
increasing DM. These relationships indicate that 
an EC of 0.6 would permit development of 
sufficient dry matter to achieve ground cover of 
70% (Grigg et al., 2001).  

 
We have shown that it is possible to simulate 
spoil parameters throughout the waste dump and 
that these simulations enable us to quantify the 
variability of certain parameters. These 
simulations can then be used to assess the 
probability, or risk, that EC will exceed 0.6, the 
cut off value as discussed above to ensure 70% 
vegetation cover. This is determined from the 
number of simulations in which the generated 
value for a given location is above the cut off 
value. In this example, it was determined that a 
cover of 70% was required for successful 
rehabilitation. Other goals may be tested, 
however, by assessing different cut off levels for 
EC. Figure 5 shows three cut off values for EC, 
0.6, 0.8 and 1.0, which related to goals for ground 
cover of approximately 70%, 60% and 50% 
respectively.  

 
The significance of probability maps is their 
ability to display the risk associated with the 
rehabilitation goal, and enable decision makers to 
choose a level of risk that is appropriate and 
identify areas that may require special attention, 
as well as in some cases identify areas that will 
not require any remediation. 

6. CONCLUSIONS 

This study presents a new approach towards the 
quantification of uncertainty in soil properties and 
risk assessment for the purpose of land 
rehabilitation. The approach presented enables the 
computationally efficient joint simulation of 
variables and eliminates the necessity for 
laborious calculations. These methods include the 
techniques of MAF that decorrelates variables 
prior to simulation, and GSGS to quantify the 
variability of soil properties. The above 
techniques are shown to facilitate risk analysis 
and assist decision making in mine site 
rehabilitation in a case study from a coal mine in 
Queensland.  
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Figure 5. Probability maps for Electrical Conductivity. 
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