
A Role Of A Low-Density Species On The Community 
Outcomes In A Model Ecosystem 

T. Suzukia, N. Nakagiria, K. Tainakaa, T. Togashib, T. Miyazakib and J. Yoshimuraa,b,c 

aDepartment of Systems Engineering, Shizuoka University, Hamamatsu 432-8561, Japan. 
bMarine Biosystems Research Center, Chiba University, 1 Uchiura, Amatsu-Kominato, 229-5502, Japan. 

cDepartment of Environmental and Forest Biology, State University of New York College of Environmental 
Science and Forestry, Syracuse, New York 13210, USA. 

Abstract: The balance of ecosystems may be altered with/without a less common species. We explore the 
role of a low-density species in a model ecosystem by perturbation experiments. We build a lattice ecosystem 
of two common species with/without one low-density species. Consider a two-dimensional lattice consisting 
of prey, predator and vacant site. We introduce the third low-density species that is preyed by the common 
prey, while eats the common predator. The relationship among three species is cyclic, corresponding to the 
Rock-Paper-Scissors game. We perform perturbation experiments by decreasing the reproduction rate of one 
common species. We then compare the resulting community structures and evaluate the effects of the low-
density species and the perturbation strength on the model ecosystems. The simulation results are dependent 
on both the low-density species and perturbation strengths. The results are often paradoxical and different 
from those expected from the mean field version of the lattice model. Our results imply that the conservation 
biology and management practice of natural ecosystems may be hindered if less common unattractive species 
are ignored. Furthermore, an introduction of a new species may alter the ecosystem balance without changing 
the apparent structures of the community. 

Keywords: Low-density species; Community structure; Perturbation; Lattice ecosystems 

 

1. INTRODUCTION 

Most natural ecosystems consist of many species; 
some of them are usually rare and others are 
common (Elton, 1966). In the conservation practice 
of natural ecosystems, however, we often ignore 
less common (or rare) specie s, except target 
species (Soulé, 1986, Gaston 1994). When an 
ecosystem is disturbed by external factors such as 
climatic changes or human habitat destruction, it 
may undergo a large change in community structure 
(Pimm, 1991). Here we often expect that the 
common species are the critical factor affecting the 
outcome of such environmental disturbances 
(Pickett and White, 1985, Stiling, 1999). However, 
less common species may be equally influential. 
With an introduction of a low-density species, the 
food-web balance of the ecosystem may become 
qualitatively different.  

We explore the role of a low-density species in a 
lattice ecosystem introducing the perturbation on a 
common species. The initial lattice ecosystem 
consists of prey, predator and vacant site (plant). As 
an experiment, we introduce the third low-density 
species that is preyed by the common prey, while 
predate on the common predator. The relationship 
among three species is cyclic, corresponding the 
Rock-Paper-Scissors game (Itoh, 1973, Tainaka, 

1988). An example of such relation is three kinds of 
fish; namely saury, mackerel and sardine. As a 
control, no new species are introduced. We use the 
lattice version of cyclic ecosystems to study the 
functional response of a model ecosystem (Tainaka, 
1988).  

To evaluate the effects of the low-density species, 
perturbation experiments are performed. We 
perform perturbation experiments by decreasing the 
reproductive rate of one common species and 
compare the eventual community structures 
with/without the low-density species. We also 
change the perturbation strength and compare the 
outcomes. The mean field version of the lattice 
model is also analyzed (Tainaka, 1988). From the 
complex outcome, we discuss the role/effects of a 
less common species in natural communities and its 
implications on our conservation practice. 

 

2. THE MODEL 

We consider two ecosystems I and II. The system I 
is composed of two species; that is prey X and 
predator Y. In the system II, the third species Z is 
introduced to the system I. If the species Z goes 
extinct, the system I becomes equivalent to the 
system I. 



X + Y →2Y, (rate:1)                    (1a)  

 

X + O →2X, (rate:r1)                   (1b) 

Y + O →2Y, (rate:r2)                   (1c) 

X → O, (rate:d1)                          (1d) 

Y → O, (rate:d2)                          (1e) 

where O represents the empty site. The interaction 
(1a) means the predation of Y; the species Y 
produces its offspring by eating X. The reactions 
(1b) and (1c) denote reproduction of species X and 
Y, respectively, while (1d) and (1e) are the death 
process.  

On the other hand, the system II contains not only 
the reactions (1a) - (1e) but also the following 
interactions: 

Y + Z → 2Z, (rate:1)                    (2a) 

Z + X → 2X, (rate:1)                   (2b) 

Z + O → 2Z, (rate:r3)                   (2c) 

Z → O, (rate:d3)                           (2d) 

where the reactions (2a) and (2b) represent the 
predation, and (2c) and (2d) are reproduction and 
death processes of species Z, respectively. In our 
analyses, we kept the steady state density of Z 
lowest among the three species. This is achieved by 
adjusting the growth/death parameters of not only Z, 
but also X and Y in the ecosystems (Fig. 1).  

Figure 1. Model ecosystems with/without an 
introduced species. Top: before introduction, and 
Bottom: after introduction. O: vacant site, X and Y: 
common species, and Z: an introduced rare species. 
Letter ri, di and i represent reproduction, death and 
predation (invasion) and the associated numbers 
denoted species.    

Our ecosystems are schematically illustrated in Fig. 
1. The system II tacitly contains the cyclic strength 
of rock-paper-scissors game, or paper-scissors-
stone game (PSSG) (Tainaka, 1988; Itoh, 1973). 
The species X eats Z, but it is beaten by Y. On the 
other hand, the introduced species Z can eat Y. The 
relation of PSSG symbolically represents ecological 
balance. A concrete example of this relation is the 
case of side-blotched lizards (Sinervo and Lively, 
1996); there are three morpho-species of males 
distinguished by colors of throat: orange, blue and 
yellow. Males with orange throats are dominant to 
males with blue; blue males are dominant over 
yellow males; yellow males resemble females in 
morphology and prevail the orange males. The 
relation among three males is represented by the 
PSSG rule. 

 

We apply a method of lattice Lotka-Volterra model 
(LLVM) (Tainaka, 1988; Nakagiri, et al, 2001) 
which has a mean-field    theory    called   Lotka-
Volterra   equation. This lattice model differs from 
the cellular automata; in the former case, processing 
is asynchronous, while the latter is synchronous. 
The natural ecosystem is usually asynchronous. 
Various results of LLVM are qualitatively different 
from the prediction of non-spatial theories. 
Evolution method of lattice model is defined as 
follows: 

Another example of PSSG is a microbiological 
community reported by (Kerr, et al 2002). Their 
system is composed of three kinds of Escherichia 
coli; that is, colicin-producing (C), colicin-sensitive 
(S), and resistant (R) bacteria. The bacteria S has 
the highest advantage for growth rate, but it is 
beaten by C because of colicin (toxin). Due to the 
growth-rate advantage, S (or R) is stronger than R 
(or C). 

1) Initially, we distribute individuals on a square-
lattice in such a way that each lattice site (cell) is 
occupied by a single individual of one of two or 
three species. 

2) Reaction processes are performed in the 
following two steps. 



(i) We perform two-body reactions; examples are 
the reactions (1a), (1b) and (1c). Select one square-
lattice point randomly, and then specify one of four 
neighbor sites. Let the pair react according to two-
body reactions. For example, if the pair is X and O, 
then the latter is changed into X by the rate r1. 

(ii) Next, we perform the single body reactions; an 
example is the reaction (1d). Choose one square-
lattice point randomly; if the point is occupied by 
X, then it becomes O by the rate d1. 
3) Repeat step 2) by L × L times, where L × L is 
the total number of the square-lattice sites. This 
step is called as Monte Carlo step (Tainaka, 1988). 
In this paper, we set L=100. 

4) Repeat the step 3) for 2500 Monte Carlo steps. 

In the present paper, we study a perturbation 
experiment. at time t=1500, the value of parameter 
r1 is jumped from 0.8 to a nonzero value. Then we 
record the density of all species. 

 

3. PERTURBATION EXPERIMENTS  

By computer, we carry out perturbation 
experiments, where the reproduction rate r1 of 
species X is suddenly decreased. In the case of 2-
species system, a single perturbation is applied at 
time t=1500. Before the perturbation, we set r1=0.8; 
then the system evolves into a stationary state. 
After the perturbation, the value of r1 is suddenly 
decreased from 0.8 to one of the four values (0.1, 
0.16, 0.24 and 0.34). 

 In the case of 3-species system, two types of 
perturbation are applied subsequently. There are 
two species X and Y at the initial state (t=0). By the 
first perturbation (t=500), the species Z is 
introduced: several empty sites (O) are changed 
into Z.  Then, the system evolves into a new 
stationary state. In this state, three species X, Y and 
Z coexist. The second perturbation is applied at 
t=1500. Before the second perturbation, we always 
set r1=0.8. After the perturbation, the value of r1 is 
suddenly decreased from 0.8 to one of the four 
values (0.1, 0.16, 0.24 and 0.34). Hence, the second 
perturbation is the same as in the 2-species system. 

 

4. RESULTS 

The results of perturbation experiments are reported 
(Fig. 2). First, we describe the result before the 
perturbation (t<1500). Computer simulations reveal 
that the system evolves into a stationary state. 
Under various initial conditions, the system reaches 
the identical state. Typical examples of stationary 
distribution before perturbation are shown at the top 
two boxes in Fig. 3. In stationary  state, the spatial 

distribution of individuals varies greatly, whereas 
the density of each species almost constant in the 
average. 

After the perturbation, the system reaches different 
final states, depending on the values of parameters. 
Final stationary patterns (t=2000) are illustrated in 
the lower 8 boxes in Fig. 3. The time dependences 
of species densities are depicted in Fig. 2 for the 
different values of r1. 

In the case of 2-species system (the left column in 
Fig. 2), we obtain the following results. When the 
reproduction rate r1 (= r) after the perturbation takes 
0.1 and 0.16, both species go extinct (Fig. 2 Top-
Left and Upper-middle-Left). However, when 
r1=0.24, the species Y goes extinct (Fig. 2 Lower-
middle-Left). On the other hand the species X does 
not go extinct. Note that r1=0.8 before the 
perturbation. Despite the reproduction rate r1 of 
species X is decreased, the density of X increases. 
Since the predator Y becomes extinct indirectly, its 
prey X is abruptly increased. Furthermore, in the 
case of r1=0.34, no species goes extinct (Bottom-
Left). In the final case, two types of indirect effect 
are observed: 1) the predator Y does not become 
extinct; nevertheless, the density of X after the 
perturbation becomes higher than that before the 
perturbation. 2) the steady-state density of Y is 
eventually decreased by the perturbation. 

 In the case of 3-species system, we obtain entirely 
different results (see the right column in Fig. 2).  
Despite the same perturbation applied at t=1500, 
surviving species are different between 2- and 3-
species systems. (i) When r1=0.1, the species Y 
goes extinct: both species X and Z survive (Fig. 2 
Top-Right). (ii) When r1=0.16, the species Y and Z 
go extinct: only species X survives (Fig. 2 Upper-
middle-Right). (iii) In the case of r1=0.24, the 
species Z goes extinct: both species X and Y 
survive (Fig. 2 Lower-middle-Right). (iv) When 
r1=0.34, no species goes extinct: three species X, Y 
and Z survive (Fig. 2 Bottom-Right). Hence, the 
perturbation (the decrease of reproduction rate of 
X) brings about various types of extinction 
indirectly. 

 

Comparing the temporal dynamics between 2- and 
3-species systems of Fig. 2, the responses of 
perturbation experiments are qualitatively different. 
The response profiles against different values of r 
are distinctively different between 2- and 3-species 
systems. Thus the existence of species Z alters the 
properties of ecosystems.  

 

The mean-field version of the lattice model is also 
calculated for r1 (Fig. 4). In the 2-species system,  



Figure 2. The time dependence of the total densities of X, Y and Z for a square-lattice system (100x100). At 
time t=1500 MCS, the initial reproduction rate r1=0.8 of X is changed to r=0.1, 0.16, 0.24 or 0.34 (from top 
to bottom). The 2-species system (left columns) is control and species Z is introduced at t=500 for 3-species 
system (right columns). (r1, r2, d1, d2) = (0.8,0.4,0.1,0.3) and for 3-species system at t=500, (r3, d3)=(0.8,0.1). 
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 Figure 4. The steady-state densities of each 
species are plotted against the reproduction rate r1 
of species X for the mean-field version of the 
lattice system. For detail settings see Fig. 2. 

 

 

the mean-field results agree well with the lattice 
counterparts. However, in the 3-species system, 
the mean-field version shows no extinction of 
species (no phase transition in Fig. 4), while 
perturbation simulations in the lattice model 
shows variable extinction of species with different 
levels of perturbation (complex phase transitions 
in Figs. 2 and 3).  

 

Figure 3. Snapshots of typical spatial patterns of 
a square-lattice system (100x100). The points of 
light gray, black, dirk gray and white represent X, 
Y, Z and O, respectively. Left columns: 2-species 
system; right columns: 3-species system; top two 
boxes: t=1000; and lower six boxes: t=2000. The 
initial parameter settings are (r1, r2, d1, d2) = 
(0.8,0.4,0.1,0.3) for all systems, and at t=500, (r3, 
d3)=(0.8,0.1) for 3-species system. At t=1500, 
r1=0.8 is changed to r=0.1, 0.16, 0.24 or 0.34 
(from top to bottom). 

 

5. DISCUSSIONS  

Our results demonstrate that a rare species may 
play an important role in the balance of the whole 
ecosystem. This happens due to the cyclic nature 
of ecosystem II with the introduced species Z. 
The difference in the two ecosystems (I and II) is 
a kind of parity law in model ecosystems (Sakata 
and Tainaka, 2001). Natural ecosystems are  



usually extremely complex. We often ignore rare 
or low-density species in such ecosystems. 
However, these rare species can become critical 
in the balance/stability of the introduced 
ecosystem, by introducing cyclic relations. Thus 
ignoring rare species may be hazardous in 
conservation and management of natural 
ecosystems. 

The strength of perturbation also affects the 
outcomes. In ecosystem I, the order of extinction 
is in agreement with the mean-field results (Fig. 
4). However, The simulation results in ecosystem 
II are far more complex and unpredictable (Figs. 
2 and 3 left columns). These results are not 
predictable at all from their mean-field 
counterparts (Tainaka, 1988). This exemplifies 
the unpredictable nature of ecosystems dynamics 
(May, 1973, Pimm, 1991). 

The current systems are a rather simple system 
consisting of 3 or 4 species (including empty 
sites). The main characteristics of this ecosystem 
is the PSSG relation among X, Y and Z. This may 
be rare in a simple ecosystem (for example, see 
the method section). However, our implications 
are far more important. The networks of natural 
ecosystems are far more complex with 
complicated food webs and other interactions. 
Many cyclic (or PSSG) interactions are imbedded 
in such complex networks, e.g., see (Elton, 1966, 
Pimm, 1991).  

The ecosystem stability is achieved by such cyclic 
interactions in its network. For example, a food 
chain contains some cyclic interactions via the 
death of individuals. If one of the low-density 
species is at one of such cyclic interactions, the 
extinction/removal of such species may alter the 
major properties of the ecosystem. Thus “low 
density” or “rare” does not mean unimportant in 
the ecosystem stability.  

The current result also indicates the extreme 
parameter sensitivities for the stability/steady 
state of ecosystems. Sensitivity analyses may play 
a key role in the stability and diversity analyses of 
ecosystems and communities. It may imply the 
extreme difficulty of ecosystem forecasts, if not 
impossible at all (Elton, 1966, Pimm, 1991).  
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