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Abstract: Herbivores, particularly introduced ones such as sheep and rabbits, have reduced the levels of 
regeneration of a number of species of native trees and shrubs in the arid rangelands of southern Australia 
since European settlement.  These reduced levels of regeneration mean that populations of some species are 
declining whilst others, less palatable to herbivores, are being maintained, hence gradually altering the 
composition and/or overall cover of vegetation.  In the long term, this could result in loss of palatable species 
valuable to the pastoral industry for animal production.  To investigate the effects of grazing, we describe a 
model which projects the age-structured populations of some native Australian tree and shrub species under 
grazing and non-grazing regimes.  The technique we are applying is an extension of the Leslie growth model, 
where the grazing and rainfall events are incorporated by the use of separate transition matrices.  The 
preliminary results indicate that rangeland management practices will need to be adjusted to ensure the long-
term sustainability, biodiversity and usability of the arid regions.  The purpose of this paper is to frame the 
context for study in the application of this methodology, as well as to indicate the problems involved in 
parameter estimation and delineate the extent of our deliberation thus far. 

Keywords: Leslie projection matrix; matrix population models; stochastic environmental factors; arid 
rangelands; grazing; long-term growth rate. 

1. INTRODUCTION 

Ecological processes commonly operate over a 
wide range of time scales, (Tyre et al. 2000), 
often over decades or longer.  This is particularly 
so with woody trees and shrubs, most of which 
have a longer life-span than humans, meaning that 
studying them by traditional direct monitoring 
techniques will take too long to generate results 
that can be used to modify existing management 
practices.   

Several studies have indicated the adverse effects 
of grazing by sheep, kangaroos and rabbits in the 
arid and semi-arid regions of Australia 
(Cunningham and Walker 1973; Lange and 
Purdie 1976; Crisp 1978; Crisp and Lange 1976; 
Harrington 1979; Lange and Willcocks 1980; 
Silander 1983; Lange and Graham 1983; 
Chesterfield and Parsons 1985; Lange 1985; 
Eldridge et al. 1990; Auld 1995; Tiver and 
Andrew 1997; Hunt 2001).   

Because of the long life-spans of woody trees and 
shrubs, there has tended to be comparatively little 
research to follow the progress of plant cohorts. 
However, since we know that herbivores are 
affecting regeneration of trees and shrubs in the 
arid zone, it is essential that we develop tools that 
will enable us to predict the sorts of changes to 
communities which are occurring as a result.    It 
is only when we can predict these changes, and 

relate these to the types of herbivores and levels 
of grazing, that we will be able to make 
recommendations for pastoral and biodiversity 
management.    

Age or stage structured matrix models are widely 
used in ecology to study population dynamics.  
These models, which are based upon the Leslie 
growth matrix (Leslie 1945) are used to determine 
the long-term growth rate and to project future 
populations under prescribed conditions. The 
'conditions' in the present study include different 
grazing regimes and environmental factors such 
as rainfall events.   

1.1   Matrix Population Models 

Matrix population models (MPM) predict future 
populations from past states (Caswell 2001).   The 
models can be represented by 

         )()1( txAtx =+       (1) 
where 

                            (2) 
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is the transition matrix between populations at 
time t and t +1.  The vector x(t) is the n x 1 
population vector at time t, with n = 1,2,3,…, 
consisting of the number of individuals in each of 



the n classes.  The parameters Fi, and Si, where Fi 
> 0, 0 ≤ Si ≤ 1, i = 1, 2,…, n,  refer to the fertility 
and survival rates of the individual stages 
respectively. The survival rates represent the 
probability of surviving from class i to class i + 1. 
The parameters Pi, 0 ≤ Pi ≤ 1, represent the 
probability of staying in the same class given 
survival.  These rates and probabilities are 
collectively known as the vital rates. 
 
Using matrix algebra, the population after t = k 
time steps is therefore given by 

                                (3) )0()( xAkx k=
where vector x(0) is the initial n x 1 population 
vector. 
 
Matrix population models can be easily adapted 
to 'stage'-structured models, rather than 'age'-
structured models.  This is particularly useful 
when there is no direct linear relationship 
between the age and the size of the individual, 
creating difficulties in age determination (Caswell 
2001). The probability of remaining in the same 
stage-class can be estimated from information on 
the duration of the stages. 
 
The challenge of these models, as with all models, 
is to estimate the parameters, which in this case 
are the vital rates. With short-lived species, 
estimation of the vital rates is possible through 
observation and controlled experiments.   
However, many of the native tree and shrub 
species in South Australia live for more than 250 
years. This makes it very difficult to measure or 
even estimate survival rates or indeed longevity 
accurately.  In addition, the fertility parameters 
refer to the number of offspring produced, on 
average, by each stage class.  This can often be 
estimated from animal populations reasonably 
accurately, but with plant populations, the 
formation, distribution, germination and survival 
of seeds is a process that is dependent on many 
varied and random events.  In addition, it is often 
not possible to determine from which age-class 
the seeds originated. 
 
1.2   Model Description 
 
The models will be constructed for individual tree 
and shrub species.  The life cycle is divided into 
stage-classes, as defined by Tiver and Andrew 
(1997) and for this study five classes are used as 
outlined in Table 1 for Myoporum platycarpum. 
The third column in Table 1 contains the relative 
fertility, which is discussed in Section 2.2. 

  
Determination of the long-term growth rate, λ, 
which is the largest real eigenvalue of the 
projection matrix, indicates the likelihood of 

sustainability.  Obviously, this parameter is a 
function of the vital rates of the matrix.   In many 
ways our focus is to fully delineate this 
dependence and thus determine the most 
significant contributing factors to the long-term 
sustainability of the population.   
 
Many theoretical studies have been undertaken in 
the last few decades on the dynamics of 
populations evolving in random environments 
(Sykes 1969; Gerrodette et al. 1985; Mode and 
Root 1998; Tuljapurka 1990; Runge and Moen 
1998; Caswell 2001; Todd and Ng 2001; Hunt 
2001) and citations therein.  There are essentially 
three methods of incorporating stochasticity into 
population projections (Sykes 1969). The first 
method concerns the addition of random errors 
into a deterministic model.  The second method 
describes the vital rates as random variables with 
specified means, variances and covariances 
between the vital rates.  The last method uses 
several transition matrices that are randomly 
selected for each realisation of the projection. The 
method that we feel is most suitable for this study 
is the last.  We have decomposed the projection 
matrix A in a manner that reflects differing 
conditions comprising grazing or restriction from 
grazing and random significant rainfall events.  
This is implemented by constructing four separate 
projection matrices specifically reflecting these 
events resulting in a model which comprises four 
projection matrices in Table 2, for each species. 
 
Table 1. The Population Stages with associated 
relative fertilities for Myoporum platycarpum.  
The juvenile stage is non-reproductive. 

Stage 
 

Description 
(Duration years) 

Relative 
Fertility, f  

I, II, III juvenile,           (10) 0.0 
IV young mature   (30) 0.75 
V mature              (45) 1.00 
VI old mature      (150) 0.5 
VII senescent        (300) 0.2 

 
Table 2. The projection matrices corresponding 
to the four different regimes. 

Regime Projection Matrix 

Ungrazed/ no rain Un 

Ungrazed/ rain Ur 

Grazed/ no rain Gn 

Grazed/ rain Gr 

 

To illustrate this method, consider the following 
sequence of events:  On a particular paddock 
grazing is allowed for two years with a significant 



rainfall event in the second year, followed by two 
years of no grazing and one more year of grazing 
with no significant rainfall.  This would then be 
represented by  

)0()5( 2 xGGUGx nrnn= .       (4) 

There are two aspects of the problem well 
illustrated by this example.  One is that in order to 
simulate the system under random rainfall events 
we will have to perform statistical and time series 
analysis on rainfall to determine return rates.  
Secondly, the sequencing of grazing and non-
grazing regimes will significantly alter the long-
term sustainability of the populations.   
Simulation using various permutations of the four 
projection matrices will therefore give an 
indication of the optimal grazing regime.  In 
addition, the combination can be analysed by 
calculating the growth rate for each sequence. 
This presents a valuable opportunity for managers 
and graziers to perform 'what if' scenarios.  

1.3     Sensitivity Analysis 

Lambda is the growth rate, and a value greater 
than one indicates that the population is 
increasing.  A value less than one will indicate a 
declining population.  The magnitude of the 
change in lambda due to a change in one of the 
vital rates is known as the sensitivity of lambda to 
that particular rate.   Perhaps more useful 
quantities are the elasticities of lambda, which are 
interpreted as the relative contributions of each of 
the vital rates to lambda.  For example we might 
say that the probability of surviving stage II and 
progressing to stage III contributes about 40% to 
the value of lambda.  This then might indicate the 
most important vital rates on which future 
experiments should be based. If for example, a 
model indicates that a population is very sensitive 
to some factor about which no data exist, then it is 
vital to collect such data.  Sensitivity analysis will 
thus indicate which of the vital rates are the most 
important in determining long-term sustainability 
of the species.  The method is applied to the 
problem of describing the effects of sheep grazing 
on Myoporum platycarpum as follows. 

2. MATRIX PROJECTION MODEL OF                  
MYOPORUM PLATYCARPUM 

2.1  Introduction 

Preliminary investigation was carried out on 
Myoporum platycarpum, a tree commonly known 
as false sandlewood.  Experiments conducted by 
Tiver (2002) on this species include monitoring 
the survival and growth of Myoporum under three 
different fencing regimes: those enclosed in rabbit 
proof fencing, those enclosed in sheep proof 

fencing and those without fencing.  The plants are 
all in stage two, being less than four years old.  In 
addition, counts of the population in each stage 
class have been conducted at three different sites 
at Middleback station, about 400 km north-west 
of Adelaide.    

2.2   Fertility and Rainfall Factors 

The fertility of the different stages is composed of 
the probability of producing seeds, multiplied by 
the probability of those seeds germinating, 
multiplied by the probability of surviving to the 
seedling stage.  Although it is not possible to 
obtain accurate estimates of all of these 
probabilities, it is possible to estimate the 
fertilities themselves, using knowledge of the 
average relative flowering capacity and frequency 
of the five stages of the species.  This produces 
the relative values given in Table 1. The absolute 
values of fertility can then be determined by 
optimisation methods, under the assumption of 
population stability, given no grazing.  This 
assumption we feel is valid, given the longevity 
of the species, and in the absence of information 
to the contrary.  Thus, if the population is stable 
then lambda must be close to one, and using this 
information a fertility factor, φ, can be determined 
which will multiply the fertility ratios, f, to 
produce Fi.  In addition, a rainfall factor, ρn, was 
introduced under the assumption that some rain 
must fall for the species to survive.  This is in 
contrast to the 'significant rainfall events' which 
occur randomly every 20 years or so.  Assume 
that an ideal rainfall regime has a rainfall factor 
equal to one. The years without significant 
rainfall will reduce rates of survival, germination 
and growth and so ρn will be less than one.  
Assume also that in the years where significant, 
or greater than average, rainfall is observed the 
rainfall factor is doubled, so ρr =2ρn. 

3. PARAMETER ESTIMATION 

3.1 Initial Populations 

Since we are dealing with a stage-structured 
model rather than an age-structured model, the 
duration, di, of each stage must be taken into 
account when determining the vital rates in each 
class.   Since these species are so long-lived, the 
estimates of the duration of each stage has to be 
estimated from experimental data and historical 
records (Tiver and Andrew 1997), primarily 
calibrated to major rainfall events.  The estimates 
for the duration of each stage for Myoporum 
platycarpum are given in Table 1. The initial 
population vectors for the grazed and ungrazed 
sites are, respectively, 
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Determining whether the ungrazed distribution is 
a stable stage-distribution is not a simple task, 
since one needs to know the survival probabilities 
and the growth rate to calculate the ratios.   
(Caswell 2001). However, since we are assuming 
for the present that the ungrazed population is in 
equilibrium, we will assume a stable stage-
distribution. This assumption allows calculation 
of the transition probabilities for the ungrazed 
projection matrix as described below.  There are 
further considerations, not discussed here, 
regarding the age distributions within each stage.   

3.2 Fertility 

The stages were estimated to have fertilities 
relative to stage V, the most fertile.  These 
relative fertilities are given in Table 1. The 
fertility factor was found to be 49.8, after 
optimizing the projection matrix Un, (ungrazed/no 
rain) for a lambda equal to one. In addition, 
during the same optimization process, the rainfall 
factor, for periods outside the significant rainfall 
events, was determined to be 0.19.  Fertility can 
now be estimated as the product of the ratios, the 
fertility factor and the rainfall factor, for each 
stage, i, as 

           Fi =  fiφ ρ,         i = 2,3,4,5.       (6) 

3.3 Survival 

Data from Tiver (Tiver 2002) indicates that the 
probability of being grazed given that there is no 
protective fencing is 0.95, and the probability of 
dying, given that the individual has been grazed is 
0.75.  Thus, under a grazing regime, using Bayes' 
Law, there would be a survival rate for the 
juvenile stage in the grazed regime of the order of 
σg1 = 0.237 or 23.7%. The probability, on the 
other hand, of surviving without grazing was 
estimated to be σu1 = 0.62.  

These rates will also be affected by rainfall events 
and given that the seedlings in the fencing 
experiment were watered, we define the 
probability of surviving and progressing from the 
juvenile stage, I-III, to stage IV as 

S1 =  σu1ρ .                       (7) 

Survival from stage IV to V, V to VI and VI to 
VII, given by S2, S3, S4, S5 respectively, are simply 
determined by the ratios of the effective 

populations in each stage, taking the stage 
duration di into account.  Thus,  
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where the xui are the entries in the population 
vector given in equation (5a).       

The probability of surviving and staying in the 
same class, Pi, is determined by the ratio of the 
duration of stage i to the estimated average total 
lifespan, for all stages except the juvenile stage.  
We believe that this stage would be heavily 
influenced by rainfall events, and although the 
other stages would also be affected, the degree 
would be much less.  Thus 
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dP for i = 2,3,4,5.   (9) 

4. RESULTS 

4.1 The Four Projection Matrices 

The four projection matrices and their 
corresponding entries are given by  
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It can be seen from the above four equations that 
only the rates in the first two rows are affected by 
the extreme rainfall events. The fertilities, 
although not integers, represent the average 
expected number of offspring that are likely to 
survive.  These values, along with the probability 
of surviving and staying in stage I-III, and the 
probability of surviving and progressing to stage 
IV are both doubled in the event of a significant 
rainfall event.  

4.2 Growth Rates of the Projection Matrices 

The dominant eigenvalues, λ, for the projection 
matrices were found using MATLAB©.  This 
value for Un was assumed to be equal to one, in 
order to determine the fertility and rainfall factors.  
An iterative process of updating λ each time 
estimates are found possibly improves the 
estimates, but trials revealed that successive 
changes in lambda are of the order of 10 -3.  The 
remaining growth rates are given in Table 3.  As 
can be seen, the long-term growth rate for the 
grazed/no rain regime is much less than one.  This 
implies a declining population.  The growth rates 
for the 'rain' regimes both indicate that the 
population will increase. 

The results of the elasticity analysis consistently 
show across all projection matrices that the most 
important vital statistic is the survival and 
progression of the juveniles to young mature 
adults, which confirms the findings of Tiver and 
Andrew (Tiver and Andrew 1997) and others.  
The elasticities of λ to Si is given in Table 3. 

Further analysis can produce the elasticities of 
lambda to the 'lower-level' parameters, such as the 
growth rates and probabilities which contribute to 
the matrix entries (Caswell 2001).  These lower 
level elasticities can then distinguish the effects of 
the various factors. 

Table 3. The growth rates for the four projection 
matrices, corresponding to the four different 
regimes.  The third column contains the 
elasticities of lambda to S1 and F2. 

 

Projection 
Matrix 

 

Growth 
Rate, λ 

Dominant 
elasticities 

S1       F2 

Un 1.0175 0.4240    0.3531 

Ur 1.9047 0.4696    0.4346 

Gn 0.7598 0.2894   0.1661 

Gr 1.2605 0.4215   0.3428 

 

The calculation of the growth rate for the 
sequence of matrices requires a different approach 

(Caswell 2001).  If the model is to be constructed 
as described above and illustrated by equation (4), 
then the stochastic growth rate, log λs, adopting 
the notation of Caswell (2001) must be calculated.   

5. DISCUSSION 

This paper is presented as a preliminary 
discussion on the possibilities and problems 
associated with modelling when using real data.  
In this study, all of the parameters are estimates 
based on the data or from constrained 
optimisation.  However, they are all biologically 
realistic, and as mentioned previously, these 
models can be used as a tool to illustrate 
consequences given a certain set of assumptions 
and premises.  

The analysis of the growth rate and the elasticities 
has indicated that the grazing regime in the 
absence of significant rainfall could cause the 
population to diminish.  Secondly, the elasticity 
analysis has indicated that it is important to 
establish more accurate estimates of juvenile 
survival. An extension of the sensitivity analysis 
will include the sensitivity of lambda to the lower 
level parameters, such as the rainfall and fertility 
factors. As well, the analysis presented here will 
aid in the design of controlled experiments to be 
performed in the future.   

Further studies could also include delineating the 
effects of different levels of grazing, and in a 
similar fashion to Hunt (2001), investigate the 
variation in the effects of grazing near to watering 
points.   

The estimates presented here are point estimates, 
which will need confidence limits. The authors 
intend to expand the study to include vital rates 
and stage durations that are represented by 
probability distributions, with given means, 
variances and covariances. For example, stage 
durations can be approximated by negative 
binomial distributions (Caswell 2001).  This is 
logical, since negative binomial distributions are 
used to determine the probability of an event 
happening after a certain period of time.  This 
expansion would also include investigation of the 
total population distributions from simulations.  

The age-structure within the stages has also 
largely been ignored, but there is very little 
information regarding the life-span of this 
species, as mentioned above.   

Another area of investigation will focus on 
rainfall.  In order to provide a realistic sequence 
of events as described in equation (4), time series 
analysis of rainfall for locations in the rangelands 
needs to be performed.  Thus, we can determine 
the probable return rates and the distribution of 



intensities.  In the subsequent analysis we will 
also investigate the possibility of using different 
rainfall factors for fertility and survival.  As 
pointed out by Lange (Lange 1992) more accurate 
rates cannot be estimated when studies encompass 
only a small fraction of the life-span of the 
individuals.  
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