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Abstract: Differential evolution (DE) is a comparatively simple variant of the broad class of evolutionary 
algorithms, which encompass genetic algorithms, evolution strategies, genetic programming and hybrids of 
these. DE has only three operational parameters, and can be coded in 20 lines of pseudo-C. Investigations of 
its performance in the optimisation of a challenging 70-dimensional beef property model indicate that it 
performs at least as well as Genial (a real-value genetic algorithm), which has been the preferred operational 
package thus far. Despite DE’s apparent simplicity, the interacting key evolutionary operators of mutation 
and recombination are present and appear to be effective. In addition, DE has the advantage of incorporating 
a form of self-adapting mutation, as found in evolution strategies, without the burdening overhead of 
doubling the dimensionality of the search-space. These processes are illustrated, and model optimisations 
totalling two years of Sun workstation computation are presented. These results show that the baseline DE 
parameters work effectively, but can be improved in two ways – firstly, the population size does not need to 
be overly conservative, and smaller populations can be considerably more efficient; and secondly, the 
periodic application of extrapolative mutation counteracts the contractive nature of DE’s intermediate 
arithmetic recombination in the latter stages of the optimisations. This provides an escape mechanism to 
prevent sub-optimal convergence. With its ease of implementation and proven efficiency, DE is ideally suited 
to both novice and experienced users wishing to optimise their simulation models. 
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1.   INTRODUCTION 

Systems research and modelling have now 
become mainstream techniques in many fields, 
including agriculture. The modelling steps of 
system definition, development, programming, 
verification, validation, and model investigation 
have been well documented (Bratley et al., 1987), 
and these steps have repeatedly proven to be 
useful in themselves, to obtain an understanding 
of the dynamics of the system under study. 
Logically, these models can also be taken to the 
next step, which is formal optimisation. This task 
becomes increasingly difficult as the size and 
complexity of the model increases (Meadows and 
Robinson, 1985). 

To conduct this optimisation, an objective 
function must first be constructed, with the 
optimisation algorithm then trialing various 
values of the input parameters to search for the 
best (optimal) combination. This objective 
function is usually taken as some overall 
economic measure of the system, for example the 
gross margin or profit of a farming enterprise or 

system. Non-economic measures can also be 
optimised (e.g. total farm production, or pesticide 
or nutrient runoff), however the optimal values of 
these will usually occur when using maximal (and 
prohibitively expensive) inputs. When there are 
potentially competing requirements in the 
simulated system (e.g., a requirement to maximise 
profit whilst simultaneously minimising soil loss), 
a compromise of these is usually considered via a 
weighted objective function. Alternately, one of 
the range of more complex Pareto multi-criteria 
evaluation methods (Coello Coello et al., 2002) 
can be used for the objective function to be 
optimised. 

A large range of optimisation methods and 
algorithms can be found in the mathematical, 
computing, operations research and applied 
literature. Agricultural models generally pose 
some of the more difficult problems for these 
methods - these complex models cannot be 
numerically differentiated; the ‘curse of 
dimensionality’ often applies to give very large 
and complex search-spaces; they typically have 



non-smooth response surfaces (including sharp 
cliffs when the system is over-utilised, and 
collapses both biologically and economically); 
multiple local optima (in overall economic terms) 
can confound the search; and epistasis (the 
interacting effects of the input variables) is 
usually pronounced. 

This range of problems means that only the most 
efficient optimisation methods are likely to 
succeed with ‘real-world’ scale agricultural 
models. In particular, the somewhat dated (but 
still widely used) multitude of gradient methods 
are poorly suited for this task. Similarly, 
deterministic direct-search methods (including the 
robust Simplex method, Nelder and Mead, 1965) 
also struggle here. Of the more modern stochastic 
algorithms, tabu search (Glover et al., 1993) and 
ant-colony methods are well suited to 
combinatorial optimisation problems, but not to 
the optimisation of multi-dimensional models. 
Similarly, simulated annealing (Kirkpatrick et al., 
1983) has proven to be thorough and reliable, but 
is too inefficient to be of practical use with larger 
problems (Mayer, 2002). This leaves evolutionary 
algorithms as the only practical methodology. 

Evolutionary algorithms encompass a range of 
different ‘nature-inspired’ methods, including 
genetic algorithms (usually binary representation, 
with recombination the primary operator), 
evolution strategies (real-value representation, 
with mutation the primary operator), and genetic 
programming (variable-length representation, 
more usually aimed at developing equations and 
programs). Whilst independently developed for a 
number of years, these sub-strains of evolutionary 
algorithms have now effectively merged, with 
each adopting the more favorable features of the 
others. Differential evolution (DE) is one such 
hybrid. 

In keeping with the large range of potential 
operators (e.g., controlling the many types and 
rates of selection, crossover and mutation), most 
optimisation software has tended to be ‘large’. 
This poses potential problems for users, in that 
they cannot be sure that these particular operators 
are correctly coded and actually doing what they 
are supposed to be doing. Table 1 lists four 
examples of algorithms which can be easily 
obtained.  

DE is simpler to code, implement and use than 
other optimisation methods (Table 1). The 
following sections introduce its methodology, and 
put these into context in comparison with other 
evolutionary algorithms. A large, complex beef 
property model is then used as a case study for 
these methods, and general conclusions regarding 
relative efficiency and performance are drawn. 

Table 1. Types and sizes of shareware 
optimisation routines (SA = simulated annealing, 
GA = genetic algorithm, ES = evolution strategy). 

Package Type Code Lines 

ASAa (adaptive) SA C 8,806 

Genesisb Binary GA C 2,829 

Genialc Real-value     
GA or ES 

Fortran 3,532 

DEd Real-value GA C      20 
a http://www.ingber.com/#ASA                              
b http://www.aic.nrl.navy.mil/galist/src/                   
c http://hjem.get2net.dk/widell/genial.htm              
d http://www.icsi.berkeley.edu/~storn/code.html 

 

2.   DIFFERENTIAL EVOLUTION 

Details of DE, including the 20-line pseudo-C 
code, are listed in Storn and Price (1997) and 
Price and Storn (1997). On test functions, DE has 
markedly outperformed both simulated annealing 
and the Simplex method, and was equal or 
superior to some common evolutionary 
algorithms (Storn and Price, 1997). A number of 
rather complex versions of DE are available on 
the DE website (see address in Table 1 footnote), 
and for general use we have included a simplified 
and commented Fortran version in Appendix 1 of 
this paper. 

The concept of DE is simple. Firstly, a population 
of candidate members (trial management 
strategies for the model) is established, usually at 
random. Each population member is characterized 
by its fitness (its value on the target objective 
function). For each population member in turn, a 
challenger is constructed. If this challenger has 
superior fitness, it will replace the population 
member in the next generation. To construct this 
challenger, three other population members are 
chosen at random. We can label these as a, b and 
c. Each parameter (management option, as coded 
on to DE’s alleles) is then addressed in turn. With 
a probability equal to the crossover rate (CR), the 
parameter is simply adopted from the population 
member that the challenger is challenging. 
Otherwise, a new parameter value is constructed 
as the value for member a plus the mutation 
factor (F) times the difference between the values 
for b and c. Successful challengers replace their 
respective population members, and, together 
with surviving members, constitute a new 
generation with higher mean fitness. The process 
continues over sufficient generations to achieve 
convergence close to an optimal solution, with the 
fittest solution being chosen. 



One possible reason that DE works so well is that 
mutation is driven by differences between 
parameter values of contemporary population 
members, giving an appropriate reduction in 
magnitude as the optimisation proceeds and 
convergence is approached. This parallels the 
successful approach used in evolution strategies, 
where the mutation variances are self-tuning. To 
achieve this feature the evolution strategies take 
these standard deviations or variances (one per 
parameter being optimised) along as extra 
parameters to be optimised. This effectively 
doubles the dimensionality, and hence the search-
space, of each problem. DE’s approximate 
approach does not require this doubling of the 
problem’s size, and thus appears to be a far more 
efficient implementation of self-adapting 
mutation. 
 

3.   OPERATIONAL PARAMETERS 

For all evolutionary algorithms, the operational 
parameters control the balance between 
exploitation (using the existing material in the 
population to best effect) and exploration 
(searching for better genes). These operators 
frequently interact with each other (Goldberg, 
1989), and the optimal combinations are problem-
dependent, and can be difficult to find. 
Fortunately, evolutionary algorithms have proven 
to be quite robust across wide ranges of these 
(Mayer, 2002). The key operators and parameters, 
and their applications in DE, are as follows.  

 

3.1   Population Size 

Price and Storn (1997) recommended a 
population size of 5 to 10 times the 
dimensionality of the problem, and stated 4 as a 
minimum value. In simulating crystal structures 
via DE, Weber and Bürgi (2002) used a 
population of 40 for a 7-dimensional problem (a 
factor of 5.7). These values have certainly been 
shown to work well in practice (Storn and Price, 
1997), demonstrating that sufficient genetic 
material is contained in the populations. However, 
this could be using an excessive amount – 
research with other evolutionary algorithms (also 
using real-value coding) has produced best results 
with factors between 1.5 and 2 (Mayer, 2002). 
Values in this range could be more efficient, by 
carrying only a sufficient number of population 
members. 

 

3.2   Selection of Parents 

A large range of selection methods have been 
used in the past, including Roulette-wheel (the 

traditional choice for genetic algorithms), ranked, 
scaled, Queen-bee, complete, truncation, and 
tournament (where a size of two appears to be the 
current standard). Fortunately, in practice all 
forms appear to work well (Mayer, 2002). DE 
uses complete selection (each parent is considered 
in each generation), and this should perform 
adequately. 

 

3.3   Recombination 

A number of studies on evolutionary algorithms 
have shown recombination and mutation to have a 
synergistic effect (Michalewicz and Fogel, 2000). 
DE incorporates both of these into one operation 
using a form of uniform crossover, albeit in a 
somewhat more convoluted way than is normally 
used. Recombination is controlled in DE by the 
user-specified crossover rate (CR). For each 
parameter in turn, either the parent’s allele is 
used, or a mutated allele (rather than a second 
parent’s, as is usually the case in evolutionary 
algorithms). Storn and Price (1997) list CR values 
of 0.1 for a thorough (but slower) optimisation, to 
1.0 for speedier (but risky) convergence, with 0.5 
being recommended. Previous evolutionary 
algorithm studies have shown that most forms of 
recombination work well, across quite a wide 
range of rates, so 0.5 would appear an adequate 
first choice. 

 

3.4   Mutation 

DE has no defined mutation rate, instead taking 
this parameter as the flip-side of CR. Previous 
studies have shown low (around 0.01) to high 
(towards 1.0) rates to all be effective (Mayer, 
2002). Using a CR of 0.5 gives a mutation rate of 
0.5 also. Studies have shown that the exact form 
of mutation applied is less critical than ensuring 
that some form is present, to drive the 
exploration.  

DE’s unique form (which allows self-adaptation 
of the mutation sizes as the optimisation 
progresses) adds a scaled difference between two 
random parents to a third parent. This is an 
arithmetical form applied to each real-value 
‘gene’ which may be intermediate or 
extrapolative, depending on the scaling factor (F). 
Storn and Price (1997) recommended an F of 
between 0.4 and 1, with 0.5 as a good initial 
choice. Investigations with DE (Kinghorn, 
unpublished) have found that ‘pulsing’ F to a 
larger amount, for example to 5.0, every few 
generations has the effect of assisting the 
optimisation process, as it induces extrapolative 
mutation.  



3.5   Replacement Strategy 

DE uses generational replacement, with elitism 
guaranteed in that the parents (in turn) are only 
replaced if their direct competitor is superior (or 
equal – this allows more genetic diversity to enter 
the search). This operation may not be as efficient 
as continuous deterministic replacement (as used 
in other evolutionary algorithms), but should 
suffice. 

 

4.   BEEF MODEL STUDY 

The system simulated is a beef property in the 
northern speargrass region of Queensland, tuned 
to ‘average’ data from the Australian Bureau of 
Statistics. A stochastic individual-animal model 
(based on DYNAMA, a commercial herd 
management package, as described in Holmes, 
1995) was used, with a daily time-step over a ten-
year horizon. Further details of this model and 
parameters can be found in Mayer et al. (2001). 
The objective function is the ten-year 
accumulated gross margin (sales less variable 
costs), and there are 70 management options 
covering stocking rates, mating and weaning 
policies, and purchasing and culling decisions. 
This 70-dimensional problem has a search-space 
of the order of 10120. 
 
Optimisations were run on a network of Sun 
workstations under Unix. Each month of runtime 
generates about 105 model runs, with each run 
producing one value of the objective function. 
The longest optimisation so far totalled 150,000 
runs, well short of the 106 to 107 required to give 
a high probability of finding the global optimum 
(Mayer et al., 2001). The latter stages are 
approaching convergence. In practical terms, 
these numbers are all that is currently 
computationally feasible, so any optimisation 
algorithms which perform well here can be 
recommended. 
 
Genial has been the preferred evolutionary 
algorithm for conducting investigative 
optimisations of this system. Genial is a real-
value genetic algorithm or evolution strategy (we 
have generally found the former implementation 
to be superior) with a wide range of operational 
parameters covering parent selection, replacement 
strategy, recombination and mutation. The most 
efficient of these optimisations used a 
comparatively small population size (200), and 
for this we had four replicates, using a range of 
recombination and mutation rates and types. The 
performance of these (Figure 1) shows little 
practical difference between these replicates. 
They all appear to be approaching convergence 

(but, disturbingly, towards different optima) at 
about 104 model runs, with only a few ‘minor’ 
lifts occurring after this. 
 
Also marked on Figure 1 is one DE optimisation. 
This used a population size of 250 (approximately 
the same as for the Genial replicates). This is only 
3.5 times the dimensionality of the problem, 
whereas Storn and Price (1997) recommend a 
multiplier of 4 as a minimum. This optimisation 
had a crossover rate (and thus also mutation rate) 
of 0.5. The mutation factor was mostly 0.5, with 
an increase to 5.0 being applied every tenth 
generation. 
 
In the initial stages of these searches (up to and 
past 104 runs), the Genial results have a clear 
advantage over DE. However, DE keeps finding 
improved solutions in the mid and latter stages. 
There is one particularly notable ‘lift’ where the 
DE optimisation obviously found a more 
profitable region of the search-space to exploit. 
Here, DE surpasses the Genial optimisations, 
which are showing signs of sub-optimal 
convergence (these were apparently converging to 
different solutions, which is of obvious concern). 
We attribute at least some of DE’s improvements 
to the self-adapting form of mutation used (versus 
the fixed types and rates as used in Genial), and 
particularly to the periodic application of 
extrapolative mutation to escape from sub-
optimal regions. 

 
Figure 1. Performance of four replicates of Genial 
(dashed lines) using a population size of 200, and 
one of DE (solid line) with a population of 250. 

 
Given the trend of higher efficiency with smaller 
population sizes, we then trialed DE with a 
population of 100 (only 1.4 times the 
dimensionality of this problem; well below that 
recommended by DE’s developers). Two 
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Appendix 1. Pseudo-FORTRAN Coding of Differential Evolution. 
! Declare and initialise – INTEGERS are popsize {number of members in the population}, loci {number of 
alleles that each member contains}, generation {current}, max_gens {maximum number of generations}, i, j, 
k, a, b, c {counters}. REALS are score {value returned from model; to be optimised}, CR {crossover rate}, F 
{mutation factor}, value(popsize) {score values for the current parents}, parent_allele(popsize,loci) {alleles 
of the parents, initially generated at random and including a subroutine call to get scores for each}, 
progeny_allele(popsize,loci) {alleles of the progeny}, allele(loci) {temporary values, as created in DE} 

do generation = 1, max_gens         ! Loop for target number of generations 

 do i = 1, popsize            ! Loop for each population member 

 1 call RANDOM_NUMBER(rand_num)                 
  a = INT(rand_num*popsize) + 1      ! Parent to be challenger’s template    
  if ( a.eq.i ) go to 1                       
 2 call RANDOM_NUMBER(rand_num)                 
  b = INT(rand_num*popsize) + 1      ! Choose two more parents      
  if ( b.eq.i .or. b.eq.a ) go to 2                    
 3 call RANDOM_NUMBER(rand_num)                 
  c = INT(rand_num*popsize) + 1      ! Parents used to construct challenger   
  if ( c.eq.i .or. c.eq.a .or. c.eq.b ) go to 3     ! must all be different 

 call RANDOM_NUMBER(rand_num)                 
  j = INT(rand_num*loci) + 1        ! Random start for loci cycle     
  do k = 1, loci            ! Loop for each loci        
   call RANDOM_NUMBER(rand_num)                
   if ( rand_num.lt.CR .or. k.eq.loci ) then   ! MUTATION         
    allele(j) = parent_allele(c,j) + F * (parent_allele(a,j) – parent_allele(b,j))      
   else                          
    allele(j) = parent_allele(i,j)      ! CROSSOVER         
   end if                          
   j = j + 1                         
   if ( j.gt.loci ) j = j - loci                     
  end do              ! End loop for each loci 

call Ag_Model(loci, allele, score)      ! Evaluate – run model with allele as inputs 
 if ( score.ge.value(i) ) then                     
  value(i) = score          ! If competitor is better, replace parent   
  do j = 1, loci                        
   progeny_allele(i,j) = allele(j)                  
  end do                          
 else              ! or             
  do j = 1, loci                        
   progeny_allele(i,j) = parent_allele(i,j)   ! Current parent carries thru to next generation
  end do                          
 end if 

end do               ! End loop for each population member 

score = -9E15                          
 do i = 1, popsize            ! Loop for the new population     
  if ( value(i).gt.score ) then                     
   k = i             ! k is index number of the best member  
   score = value(k)                       
  end if                           
  do j = 1, loci                         
   parent_allele(i,j) = progeny_allele(i,j)    ! Progeny become new parents     
  end do                           
 end do               ! End loop for new population     
 write value(k), (allele(k, i), i=1, loci)      ! Report best solution (or every few gens.) 

end do                ! End loop for target number of generations 


