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We discuss some challenges presented by trending data in time series econometrics.  To the empirical
economist there is little guidance from theory about the source of trend behavior and even less guidance
about practical formulations.  Moreover, recent proximity theorems reveal that trends are more elusive to
model empirically than stationary processes, with the upshot that optimal forecasts are also harder to estimate
when the data involve trends.  These limitations are implicitly acknowledged in much practical modeling and
forecasting work, where adaptive methods are often used to help keep models on track as trends evolve.  The
paper will discuss these issues and limitations of econometrics, introducing a new concept of coordinate
cointegration, and offering some thoughts on new practical possibilities for data analysis in the absence of
good theory models for trends. Some long historical series on prices and yields on long securities are used to
illustrate the methods.
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It is like giving the play of Hamlet
without Hamlet to eliminate the secular
trends of i and P from a study of long
term relationships in which thes very
secular trends are most important and
dominant influences.  Irving Fisher (1930,
p. 432)

1. INTRODUCTION

A distinguishing characteristic of most economic
time series is trending behavior.  Such time series
often behave either in a wandering manner with
long and erratic cycles (as in the case of interest
rates and stock prices) or as if they were influ-
enced by some secular drift over time (like many
national income components).  Much of modern
time series econometrics is concerned with the
statistical analysis of such properties, including the
possible interconnectedness of the trends across
different series.  In spite of many decades of re-
search in fields like monetary theory and economic
growth, economics provides little guidance about
the source of such trends and even less guidance
concerning suitable formulations for practical
work.  Indeed, trend formulations that appear in
economic theory models are often based on mathe-
matical convenience and/or an appeal to some
broadly acknowledged steady state characteristic,
including the so-called “great ratios of macro-
economics.”  Such characteristics are themselves
often based on simple long run data averages and
reflect in a primitive way some commonality in the
trending behavior of multiple series.

In practice, therefore, while many economists see
trends in the data, the econometric modeling of
such trends is a much more difficult task.  It is also
a task where failure has major implications in fore-
casting.  The trend is often regarded as a dominant
feature of the data (as in the headnote citation of
Irving Fisher leading the article) and if the trend
mechanism is poorly captured in an empirical
model, we can expect forecasts from the model to
carry forward the poor approximation.  In practical
work we are very accustomed to this phenomenon
— as the forecast horizon is extended and obser-
vations are subsequently collected and calibrated
against the forecasts, the data drift steadily away
from the given model.  In short, one of the laws of
modern time series econometrics (Phillips, 2003)
is that “no one understands trends, but everyone
sees them in the data.”

Figure 1. UK Producer Prices and Long Security
Yields 1720–2002



Figure 1 graphs yields on long securities and
logarithms of producer prices in the UK over
1720–2002.  The figure is split into two periods,
the first panel showing 1720–1939 and the second
1940–2002.  These series show a remarkable
commonality in their movement over this long
historical period.  Especially over 1720–1939,
there are long subperiods in these two centuries
where the series rise and fall together over time.
This empirical phenomenon has long been noted.
In his Treatise on Money, Keynes (1930) described
the apparent co-movement as

one of the most completely established
empirical facts within the whole field of
quantitative economics, though theoretic-
cal economists have mostly ignored it.
Keynes (1930, p. 198)

Keynes, Irving Fisher (1930) and many others
since have put forward many possible theoretical
explanations of the phenomenon.  All explanations
share the common ground that the phenomenon is
dynamic.  Economists agree that high price levels
and high interest rate levels may well be
associated, as they appear to be in Figure 1, but
they also agree that interest rates are not high
because prices are at a high level and vice versa.  It
is, instead, the transitions between the levels that
are important.  As Fisher explained it,

at the peak of prices, interest is high, not
because the price level is high, but be-
cause it has been rising and, at the valley
of prices, interest is low, not because the
price level is low, but because it has been
falling.  Fisher (1930, p. 441)

Fisher noted the trending behavior of these series
and considered the trends to be a vital element in
their relationship.  Over 1720–1939 the series
appear to trend together in a systematic way.
Since 1940, prices have risen persistently, but at
very different rates of inflation over subperiods,
whereas yields have both risen (to the mid-1970s)
and fallen.  Recent inflation targeting and cash rate
management policies of the Bank of England and
other monetary authorities give good reason to
expect some change in the relationship between
these variables, leading to stronger links between
inflation and yields.  Both empirical and institu-
tional evidence therefore indicate that the long run
historical relationship between prices and rates
may have altered since 1940.  This matter can be
tested empirically, as we shall do shortly.

A primary limitation of empirical econometric
work is that the true model for such data is
unknown and probably unknowable.  In the pres-
ent case, modeling the apparent trending behavior
is particularly difficult, more so because the trends
seem to consist of long cycles of upswings and

downswings punctuated by subperiods in which
the movement is in different directions.  A remark-
able feature of commonality of the series over the
period 1720–1939 is that the co-movement appears
to include much of the subperiod behavior as well
as the longer lived trends, a matter on which we
shall comment further below.

The present paper discusses the challenge pre-
sented by trending data when, as in the example
just outlined, there is little guidance from theory
about the source and nature of the trending
behavior.  In such cases, it is possible to represent
the trend in terms of coordinate functions that
capture both trend and cyclical behavior.  Using
this agnostic coordinate function approach, it is
possible to analyze series co-movement such as
that observed above between yields and prices.
We present some new methods for doing so and
discuss some recent research on the limitations of
modeling and forecasting with trending data.

2. NO ONE UNDERSTANDS TRENDS

The absence of a rich theoretical framework for
modeling trends partly explains the rather im-
poverished class of trend formulations that appear
in applied econometric work.  The most commonly
used models are polynomial time trends, simple
trend break polynomials, and stochastic trends,
which include unit root models, near unit root
models and fractional processes.  Occasionally,
nonparametric trend specifications are used.  When
the focus is on trend elimination (for instance, in
the extraction of the cyclical component of a series
for the study of business cycles), smoothing
methods are common.  The most prominent of
these is based on ideas developed originally by
Whittaker (1923) on smoothing filters for
graduating time series and his method has become
commonly known in macroeconomics as the
Hodrick–Prescott filter following work by
Hodrick–Prescott (1997) that utilized these tech-
niques with macroeconomic data.  These and other
methods like spline smoothing (Schoenberg, 1964;
Wahba, 1978) and band-pass filtering (Baxter and
King, 1999; Corbae, Ouliaris and Phillips, 2002)
all provide practical mechanisms for dealing with
trends in data.  But it is unrealistic to pretend that
these formulations and filters explain the process
by which trends actually occur in the real world. In
short, no one really understands trends, even
though most of us see trends when we look at
economic data.

One nearly universal consequence of trends in the
data is an empirical regression phenomena called
“spurious” regression. In effect, any trend function
that we postulate in an econometric specification
will turn out to be statistically significant in large



samples provided the data do in fact hav e a trend,
whether it is of the same form as that specified in
the empirical regression or not.  A very well
known example is that of a fitted polynomial trend
(which turns out to be statistically significant with
probability one asymptotically) when the true trend
is stochastic (Durlauf and Phillips, 1988).  This is
so even when robust standard errors (that account
for residual autocorrelation) are used to assess
significance (Phillips, 1998).  Similar results hold
for trend breaks, fractional processes and
regressions among such variables even when they
are stochastically independent, the latter being the
phenomenon originally studied in Granger and
Newbold (1974) and Phillips (1986).

The nomenclature “spurious regression” has
become universal and carries a pejorative connota-
tion that generally makes empirical researchers
anxious to show that their fitted relationships are
validated by some procedure. In fact, in his early
studies of the correlation between interest rates and
prices, Fisher (1930) recognized this potential
difficulty arguing that

It is necessary to guard against the pos-
sibility that these coefficients are of the
familiar nonsense type, and are spuriously
high because of the presence of secular
trend [Fisher’s emphasis] forces that
affect both P and i.  Fisher (1930, p. 431)

While acknowledging that for these variables “it is
rather doubtful that trend forces are involved
which should be eliminated,” Fisher extracted both
linear and quadratic trends over subperiods of the
data and took correlations of the residuals, finding
results that were “interesting and amazing” giving
correlations between the series that were still
significantly high, corroborating co-movement of
interest rates and prices.  Fisher concluded:

The elimination of the secular trends from
the comparisons makes the relationship of
i and P depend solely upon the similarity
of fluctuations in the shorter or cyclical
periods. Even without Hamlet the play
proves to be astonishingly informing and
interesting.  It is quite definitely demon-
strated that, in times of marked price
changes, as in the World War period, the
effects of price movements are felt rather
quickly upon the rates of interest, even in
the case of long term bond yields.  Fisher
(1930, p. 438)

3. CO-MOVEMENT

Presently available econometric methods make
alternative methods of analysis possible.  To begin,
it is obviously of interest to test the apparent co-

movement of the series directly.  Tests of cointe-
gration enable us to assess the evidence for co-
movement directly without concern for short run
dynamic effects. Figures. 2 and 3 show recursive
calculations of the residual based Zt and Z  tests of
cointegration (Phillips and Ouliaris, 1990) involv-
ing the long security yields and the logarithm of
wholesale (producer) prices shown in Figure 1.

Figure 2. Recursive Values of Zt test for
cointegration of Yields and log Prices 1750–2000

Figure 3. Recursive Values of Z  test for
cointegration of Yields and log Prices 1750–2000.

The tests both confirm the presence of coin-
tegration at the 5% between the variables and both
statistics advance further into the tail of the
distribution as we move through the data up to
around 1940 at which point there is an abrupt
change.  By the 1970s the statistics reject cointe-
gration, giving statistical confirmation of a change
in the relationship between prices and yields in the
post war period that was suggested earlier by
inspection of the data.

Similarly, when a linear relationship between
yields and prices is fitted recursively by fully
modified least squares (Phillips and Hansen, 1990)
over 1750–2000, we find that the slope coefficient,
which is shown in Figure 4, is quite stable over
one and a half centuries from 1800–1940.  Figure
5 shows recursive estimates of the same slope
coefficient obtained by low frequency band least
squares (Phillips, 1991), where the coefficients
have a similar recursive form over the sample
period. After 1940, the coefficient estimates (from
both procedures) fluctuate considerably.  There is



also considerable coefficient fluctuation over
1750–1800, which can in part be explained by the
shorter sample period and in part by substantial
short term fluctuations in prices and yields over
this period that are not always in concert, as is
evident in the data.  As might be expected, the low
frequency coefficient estimates (which eliminate
high frequency components in the regression) in
Figure 5 show less fluctuation in the early part of
the sample.  The evidence from the cointegration
tests and the coefficient estimates therefore both
point to a stable long-term relationship (with a
coefficient around 2.0–2.5) between yields and
prices over the period 1800–1940.

Figure 4. Recursive Values of Fully Modified
Least Squares Estimates of Cointegrating

Coefficient of Yields on Prices 1750–2000.

Figure 5. Recursive Values of Low Frequency
Band Least Squares Estimates of Cointegrating

Coefficient of Yields on Prices 1750–2000.

It is also of interest to assess the degree of
nonstationarity in the two variables.  One way of
doing so is to estimate the memory parameter (i.e.,
the index of fractional integration) in each case.
Figure 6 shows recursive estimates of the frac-
tional integration parameter (d) for both series
together with upper and lower 95% confidence
limits.  The estimates are obtained using the exact
local Whittle estimator of Shimotsu and Phillips
(2002) with a bandwidth of m = n0.7 frequencies
around the origin.  This estimator is consistent and
the (asymptotic) confidence interval is valid for all
values of stationary and nonstationary d.

FIGURE 6. Recursive Exact Local Whittle
Estimates of the Long Memory Parameter d.

The estimates of d for yields are generally in the
range 0.8–0.95 and appear to be fairly stable
around 0.85 for much of the period 1820–1960.
After 1960, the estimates of d rise to above unity
and then fall back down again to around 0.85 by
the year 2000.  The (pointwise) confidence band
for d includes unity, so we cannot reject the
hypothesis of a unit root in yields throughout the
period.

For prices, the estimates of d are in a similar range
0.75–1.0 and again are fairly stable around the
level 0.8 over the period 1800–1940 with the
exception of a small blip upwards during the first
world war.  After 1940, the long memory estimates
for prices rise to around 0.9 and continue rising
thereafter towards unity around the year 2000.
The upper limit of the 95% confidence band is
around unity for much of the period to 1940 and
thereafter rises and includes unity from around
1950 onwards.

The differences in the memory properties of the
two series therefore appear to be small over much
of the period.  In both cases the memory parameter
appears to be generally less than unity.  There are
indications of some instability in the estimates
over the final part of the period from 1940,
corroborating the earlier evidence reported.

4. COORDINATE COINTEGRATION

It has recently been suggested by the author (1998)
that deterministic trend functions can be used as a
coordinate system for measuring the trend
behavior of an observed variable, much as one set
of functions can be used as a coordinate basis for
studying another function.  Thus, any function
f L∈ 2 0 1[ , ]  can be written in terms of an ortho-

normal basis { }ϕ k k =
∞

1  as f x c xk kk
( ) ( )=

=

∞∑ ϕ
1

.

Continuous stochastic processes such as Brownian



motion and diffusions also have representations in
terms of the functions ϕ k  but with coefficients ck

that are random variables rather than constant
Fourier coefficients.  Such formulations can be
given a rigorous function space interpretation in
terms of functional representations of the limiting
stochastic processes or deterministic functions to
which standardized versions of the trending data or
trend functions converge.

To fix ideas suppose that Xt is a stochastic trend
with ∆X ut t=  and that partial sums of the

stationary process ut satisfy the functional law

n u Bt dk

n−

=

⋅
→ ⋅∑1 2

0

/ [ ]

( ) , a limit Brownian motion

process, where [ ] represents the integral part of the
argument.  If the initial condition X o np0

1 2= ( )/ ,

we then have n X Bn d

−
⋅ → ⋅1 2/

[ ] ( ) .  When Xt is a p-

vector, B is a vector Brownian motion with

covariance matrix Ω = +=−∞
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singular then Xt is cointegrated with cointegration
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β’ ( )B ⋅ = 0  with probability one.

The limit stochastic process B(r) has an almost
sure unique representation in terms of deter-
ministic functions over the interval r ∈  [0,1].  It is
particularly convenient to use the orthonormal
functions corresponding to the covariance kernel
of B and this leads to the Loève Karhunen
representation
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where the components k are iid N��� �� ���

ϕ πk r k r( ) sin[( / ) ]= −2 1 2 .  This series repre-

sentation of B(r) is convergent almost surely and
uniformly in r ∈  [0,1].  Let K, and ϕK(r) be K-
vectors of the first K elements of { k} and {ϕK(r)},

�����	������� ���� �, and ϕ�(r) be vectors of the
remaining elements of these sequences. Then, we
may write (1) as
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where ΛK = diag(λ1,..., λK), Λ� = diag(λK+1,λK+2,...)
and

Ξ ΞK K K K= =⊥ + +[ ,..., ), [ , ,...]ξ ξ ξ ξ1 1 2 .

Note that the coefficient of the deterministic
function ϕ�(r) in (1) is of order Op(1/k), so that the
functions in the representation become less
important as k gets large.

The relationship (2) can be fitted empirically using
observations {Xt : t = 1,...,n} in the linear re-
gression
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Phillips (2001, Lemma 2.2) showed under weak
regularity conditions that as n ��

� ( ),/

. .′ = +a oK K K a sΞ Λ1 2 1                                            (5)

so that the empirical estimates aK asymptotically
reproduce the coefficients in the LK representation
(2).

In contrast to conventional regression asymptotics,
the coefficients and their limits as n � �� �
�
random variables.  In fact, if K � �� ��� n � �
with K/n � ��� ���� ��������� ��� 
��
�������� 	��
entire series (2).

Now, if the elements of Xt are cointegrated with
����	��
�	�������	�
� ��B is degenerate in the sense
	��	� � ��� �������
����� ������ � �

������������
we have from (2) that

′ = ′ =⊥β βΞ ΞK 0 0, .                                            (6)

We call (6) coordinate co-movement or coordinate
cointegration because it implies that the coordinate
coefficients in the LK representation satisfy the
same linear equations when the series elements co-
move or cointegrate.  If only the first K of these
relations held, we refer to it as K-coordinate co-
movement.

!�����	���������	����� ���" K� �] can be estimated
empirically, as seen in (5), we can in fact attempt
	�� ��	���	�� 	��� ����	��
�	���� ���	�
� � �
��� 	��
fitted elements aK.  A more direct approach is to
build the hypothesis of cointegration into the
structure of (4).  The model then involves restrict-
tions on the random coefficients and these can be
dealt with by means of a reduced rank regression
of the following form
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where K is p × s, ′�γ K  is s × K and s = p – r, where

r is the cointegrating rank (the rank of the matrix
� ���� 	��� ���#�
� ��� ��������� �
� �����
��

����������	�����	��
�	�������	�
������ ����XtK in (8)



is the fitted value of Xt using the K coordinate
functions ϕK and allowing for co-movement by
virtue of the reduced rank coefficient matrix in (7).
The author has been able to show that under weak
conditions

� ,α βK p→ ⊥

��
�� �����	����
	�����������������	���� ���
��
����� �� ������	��	� ��	���	�� ��� � ���#$��	� 	�
normalization) can be obtained.

Figure 7 shows the results of applying this pro-
cedure to the series of yields and prices, allowing
for the presence of cointegration (r = 1).  Here K
was chosen to be 175. The degree of co-movement
that is picked up by these coordinate functions is
remarkable. Movement in the price series is
captured closely because the number of
deterministic regressors (K) is large.  The corres-
ponding trend behavior of the yield series is also
followed quite closely even though only one extra
parameter is fitted.  As is clear from the figure, the

fitted values �X tK  reveal the common trending

component in the series rather well over most of
the historical period. It is only in the period post
1940 that the co-movement appears to break down,
corroborating findings from earlier in the paper.

Figure 7. Yields and Prices against Cointegrated
Co-ordinate System of Deterministic Functions

1718–2002.

This approach of trend coordinatization has many
advantages.  The method is not restricted to series
that have unit roots and may be applied to any
series that are nonstationary.  While the determin-
istic coordinate functions used here are convenient,
others can be used if they are more suited to the
series under study.  It is also not necessary that the
series have the same stochastic order or rates of
convergence to a limiting stochastic process.  In
addition, it is possible to use trend coordinatization
for trend extraction purposes. Fitted trend
functions obtained by this method may then be
used in conventional tests for co-movement and
estimation.  Finally, one can limit the coordinate
function co-movement to any finite number (K) of
coordinates.  Full coordinate co-movement occurs

when the reduced rank structure applies for K ��
as n �����%�
	�������
����	����&�������	�����
�
when the reduced rank structure applies only for
finite K.

It is appealing that the approach provides a
mechanism for relating variables of different sto-
chastic order (like time polynomials and random
walks) so that it can be used to justify relationships
between observed variables which have differing
memory characteristics, overcoming the apparent
“problem” of relationships between stochastically
imbalanced variables.  Interestingly, the approach
also gives consistent estimates of cointegrating
structural coefficients even though it is based on
empirical regressions that are typically thought of
as being “spurious” such as the regression of
stochastic trends on deterministic trends.  Hence,
relationships between trending variables that are
often deemed spurious actually carry a great deal
of useful information and can be used directly for
consistent estimation.

5. SIMULATION EVIDENCE

As a brief illustration we simulated the following
cointegrated model

X bX u
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1

1

ρ
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.

The cointegrating coefficient b was estimated
using ordinary least squares (OLS), fully modified
least squares (FM-OLS), vector autoregression
reduced rank regression (VAR-RRR) (Johansen,
1988), and coordinate reduced rank regression as
in (7) above.  Kernel estimates of the probability
densities of these estimates are shown in Figure 8
��
�	����������
�� �����'��#���(����n = 100, and K
= 75.  The VAR-RRR was estimated with a single
lag, consonant with (9).

Figure 8. Densities of Cointegrating Coefficient
Estimators: True coefficient b = 2, n = 100,

K���)*�� �����'�



The results show that coordinate RRR performs
well.  It is less biased than OLS and has greater
concentration than FM-OLS.  But, it is more
biased and a little less concentrated than VAR-
RRR. Of course, VAR-RRR is performed with the
correct specification corresponding to (9), includ-
ing a single lag, and therefore has some obvious
advantages in this case, especially over FM-OLS
(which is designed to allow for general error
specifications).

6. CONCLUSION

The probabilistic foundation of econometrics
conventionally presumes that the observed process
can be faithfully represented in terms of a prob-
ability space with quantifiable economic variables
defined as random elements on that space.  This
conceptualization has proved to be a useful
approach to formal modeling and is so much part
of our conventional wisdom that it is very easy to
accept that there must be an underlying true data
generating process on the defined space.  How-
ever, the actual process of data generation may not
fit faithfully into this framework without an
extraordinary level of complexity that belies the
notion of modeling as we presently know it.  This
view may initially appear heretical but it becomes
reasonable upon serious reflection.

When the data involve trends, as most macro-
economic time series do, even a little empirical
experience is sufficient to show the inadequacy of
commonly used trend formulations.  The alterna-
tive perspective suggested here is that, while we
may not understand the trending mechanism itself,
we still have the opportunity to coordinatize a
trend in terms of simple deterministic functions,
just as we can coordinatize a function in a space of
functions using a simple set of basis functions.  As
we have shown, this coordinatization provides
rather a general framework for thinking about
trending time series, one that is not restricted to a
particular class of time series generating mech-
anisms.  This framework gives rise to a new
concept of coordinate co-movement which can be
used to study patterns of common behavior in time
series. Rather remarkably, while empirical regres-
sion estimates of such coordinate representations
have in the past been considered “spurious,”
econometric estimates of these coordinate systems
can be used to produce consistent estimates of the
cointegration space when there is co-movement in
the data.  The empirical and simulation evidence
given here indicates that the approach holds some
promise in practical applications and at least
provides a new way of looking at trending data.

7. DATA

The producer price series has two main sources.  It
is constructed from a historical Wholesale Price
Index (WPI) series used in Shiller and Siegel
(1977) and a Producer Price Index (PPI) series
from the UK Government Statistical Service
(www.statistics.gov.uk).  The Shiller and Siegel
price series covers the period 1718–1973 and is a
Wholesale Price Index for the UK constructed by
splicing several other constituent series, as
explained in the appendix of their article.  The PPI
series is the (annual) producer price index for
output prices (Series Identifier: PPLU all
manufacturing 1974–2002), downloaded from
www.statistics.gov.uk.  The PPI data was spliced
to the WPI series by first splicing the WPI to the
retail prices index (also obtained from
www.statistics.gov.uk) for 1974 using the common
year 1973 for those series and then splicing the PPI
series to this series by multiplying the PPI series
by the ratio of the two series for the overlapping
year 1974.

The yield series also comes from two sources.  It is
constructed from the yield series used in Shiller
and Siegel (1977) and the yield on 3.5% War Loan
securities obtained from the Bank of England
(www.bankofengland.co.uk).  The Shiller and
Siegel series covers the period 1718–1973 and is
based on series compiled by Homer (1963)
representing the yield on perpetual annuities and
various consols, as explained in the appendix of
their article.  This series was spliced to a series for
the yield on 3.5% War Loan securities — Series
WRLN in Table 22.4 of the Bank of England
Monetary and Financial Statistics site
(www.bankofengland.co.uk/mfsd/abst/part1.htm)
— by multiplying the series with the geometric
mean of the ratios of the rates for the overlapping
years 1970–1973.
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