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Abstract: The present analysis is an application of the continuous time replicator dynamic to a market 
equilibrium model. Let us consider that there are two automobile corporations that make two types of 
automobiles, namely deluxe and ordinary cars. Each corporation has its own production limits for these two 
types of automobiles, and each produces two types of automobiles so as to maximize profits, calculated to 
include conjectural variations between the two firms. Let us define xi

p as the quantity of automobiles for 
corporation p (p=1,2) and type i (i=1,2). The non-cooperative Nash equilibrium solution is obtained after 
assuming the profit maximization behavior for each corporation under the conditions of normalized 
constraints as : x1

1+x2
1=1 and x1

2+x2
2=1 and non-negative constraints, xi

p
  ≥ 0 (p,i=1,2). To get the Nash 

equilibrium point, the profit function of corporation p is specified as : Ep(x1,x2)=∑fi
p(xi

p)-∑∑θij
pxi

pxj
q 

(p=1,2,i,j=1,2(i≠j,p≠q)), where θij
p is the conjectural variations. The replicator dynamic for corporation 1 is 

specified as : dx1
1(t)/dt=x1

1(t)x2
1(t){df1

1(x1
1(t)/dx1

1-df2
1(x2

1(t))/dx2
1-∑(θ1j

1-θ2j
1)xj

2} and dx2
1(t)/dt= x1

1(t)x2
1(t) 

{df2
1 (x2

1 (t)  /dx2
1-df1

1(x1
1(t))/dx1

1-∑(θ2j
1-θ1j

1)x j
2}. Changes in the values of θij

p and the parameters included 
in the profit functions make possible many alternative production mixes between deluxe and ordinary cars for 
the two corporations. 
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1. Introduction 

There are various types of markets ranging from 
competitive markets to monopoly markets. In 
contemporary industrial society, oligopoly 
markets prevail in manufacturing industries such 
as automobiles, electric appliances, PCs, etc. One 
of the key problems facing producers is to decide 
on how much to produce and how to allocate 
production capacity among a mix of goods.  
 
The Nash equilibrium model is a useful tool for 
clarifying the structure of oligopoly markets. 
Here, we will propose a simple model of the Nash 
equilibrium and use a simulation method to derive 
an optimal solution for production decisions by 
rival firms.  
 

Section 2 explains the model in general, and 
section 3 denotes how to derive the optimal 
production solution using numerical methods.  
The present analysis uses the numerical method of 
the continuous time replicator dynamic that is 
used for the game-theoretic problem on ecology, 

group genetics and evolutionary economics. 
Section 4 proposes a simulation model and the 
results are reported in section 5. Finally section 6 
presents some conclusions. 

 

2. Non-cooperative Nash equilibrium model 
and resource allocation  

A game of P-players is considered in general with 
profit function Ep, decision variables xp∈Rn. All 
profit functions Ep(p=1,2,…, P) are assumed to be 
the function of x1,…,xP. The constraints of xp are 
independent of other players and are included in 
SP. The problem of a non-cooperative game is 
formulated as: 

 

Max xp Ep(x1,…,xP) subject to xp∈SP (1) 

For simplicity, X is defined as 

X=(x1T,…,xPT)T    (2) 

where T is used for transposition. As a rational 
solution for a non-cooperative game, the Nash 



equilibrium is proposed. The Nash equilibrium 
solution, X*=(x*1T,…,x*PT)T, is obtained by the 
following P-simultaneous equations including 
maximizing operation as: 

 

Ep(x*1,…,x*p-1,x*p, x*p+1…,x*P) 

= max xp Ep(x*1,…,x*p-1,xp, x*p+1…,x*P)  

subject to xp∈SP (p=1,…,P)  (3) 

 

where  

 

SP={xp | ∑xi
p = 1, xi

p  ≥0, i=1,…,n}  (4) 

 

 

3. Dynamics to solve Nash equilibrium in terms 
of resource allocation 

A player, under the condition of fixing  the values 
of decision variables for other players, considers 
gradient vector with respect to own decision 
variables 

∇xpEp(X) = (∂Ep(X)/∂x1
p,…,∂EP(X)/∂xn

p)T (5) 

and the gradient system by the steepest ascent 
method for changing in xp as: 

dxp(t)/dt =∇xpEp(X(t)), p=1,…,P  (6) 

The trajectory of dynamics surely does not satisfy 
the constraint set of (4). To avoid such a situation 
by reducing the velocity of the gradient when 
reaching the border of the non-negative constraint 
of (4), equation (6) is modified as 

 

dxp(t)/dt =QA
M(xp)M(xp)-1∇xpEp(X(t)), p=1,…,P

     (7) 

where M(xp) is the variable metric matrix  

 

M(xp)=diag[(1/xi
p)],   (8) 

 

and QA
M(xp) is the variable metric projection 

matrix 

QA
M(xp) =I-M(xp)-1AT(AM(xp)-1AT)-1A 

=I-diag[xi
p][1,…,1]T[∑xi

p]-1[1,…,1]  (9) 

 

onto the hyper-plane by normalized equality, 
where A= [1,…,1] 

[1,…,1]xp = 1    (10) 

 

The elements of (7) is described as 

 

dxi
p(t)/dt 

={xi
p(t)(1-xi

p(t))(∂Ep(X)(t)/∂xi
p)-∑j ≓ ixi

p(t)xj
p(t) 

(∂Ep(X(t))/∂xj
p)}    (11) 

that is called the replicator dynamic with 
interference (cf. Fisher (1930), Schuster and 
Sigmund (1983), Sigmund (1984)). 

 

 

4. Application of the replicator dynamic to 
non-cooperative Nash equilibrium for resource 
allocation 

For simplicity, we consider a two-person (P=2) 
game with two products (n=2). Even in the 
simplest model, there is no loss of generality in 
the model described in section 2. As a concrete 
example, there are two automobile companies 
such as Toyota and Honda, and both of them 
produce two types of automobiles, namely 
ordinary and luxury cars. The decision variables 
are x1=(x1

1,x2
1)T and x2=(x1

2,x2
2)T where suffix 

indicates product and superfix indicates firm. The 
profit functions of each firm are 

 

E1(x1,x2)=∑fi
1(xi

1)-∑∑θij
1xi

1xj
2  (12a) 

E2(x1,x2)=∑fi
2(xi

2)-∑∑θij
2xi

2xj
2               (12b) 

 

 

where fi
p is the gain from product i of firm p, and 

θij
p is a loss parameter suffered by the product of 

xj
q (q≠p) when p produces xi

p and q produces xj
q. 

In economics of firms, gain is the corporate profit 
and loss is various kinds of conjectural costs. The 
constraints are: 

 

x1
1+x2

1=1    (13a) 

x1
2+x2

2=1   
 (13b) 

 

The dynamic for firm 1 of (11) becomes 



 

dx1
1(t)/dt 

=x1
1(t)x2

1(t){df1
1(x1

1(t)/dx1
1-df2

1(x2
1(t))/dx2

1-
∑(θ1j

1-θ2j
1)xj

2}    (14a) 

 

dx2
1(t)/dt 

= x1
1(t)x2

1(t){df2
1(x2

1(t)/dx2
1-df1

1(x1
1(t))/dx1

1-
∑(θ2j

1-θ1j
1)x j

2}    (14b) 

 

dx1
2(t)/dt 

=x1
2(t)x2

2(t){df1
2(x1

2(t)/dx1
2-df2

2(x2
2(t))/dx2

2-
∑(θ1j

2-θ2j
2)xj

1}    (14c) 

 

dx2
2(t)/dt 

= x1
2(t)x2

2(t){df2
2(x2

2(t)/dx2
2-df1

2(x1
2(t))/dx1

2-
∑(θ2j

2-θ1j
2)x j

1}    (14d) 

 

 

5. Simulation 

For firm 1, the gain from products 1 and 2 are 
indicated respectively as: 

 

f1
1(x1

1)=-2(x1
1-1.5)2+3 

f2
1(x2

1)=-0.5(x2
1-2.5) 2+3, 

 

The difference in the fi
p functions is due to that of 

production technology for products and firms. 
The profit function, E1(x1,x2), for firm 1 is 
specified as: 

 

E1(x1,x2)=f1
1(x1

1)+f2
1(x2

1)-(θ 1
1x1

1x1
2+θ2

1x2
1x2

2) 

 

where θ1
1=θ11

1, θ2
1=θ22

1 and θ12
1 and θ21

1 are 
assumed to be zero. For firm 2, the gain functions 
for products 1 and 2 are, respectively: 

 

f1
2(x1

2)=-2(x1
2-1.7) 2+3 

f2
2(x2

2)=-0.5(x2
2-2.7) 2+3, 

The profit function, E2(x1,x2), for firm 2 is 
specified as: 

 

E2(x1,x2)=f1
2(x1

1)+f2
2(x2

2)-(θ 1
2x1

2x1
1+θ2

2x2
2x2

1) 

 

where θ1
2=θ11

2, θ2
2=θ22

2 and θ12
2 and θ21

2 are 
assumed to be zero.   

In the simulation, we will change the four values 
of θ1

1, θ1
2, θ2

1 and θ2
2, and get the Nash 

equilibrium solution for the decision variables of 
x1

1, x1
2, x2

1 and x2
2. It is difficult to show this 

eight-dimensional space in a graph, so we show a 
three-dimensional figure that moves x1

1, θ1
1 and 

θ2
1 after fixing θ1

2 =1and θ2
2=1. Figure 1 

indicates the change in the Nash equilibrium 
value for x1

1.  



Figure 2 indicates the Nash equilibrium solution 
for x1

1, x1
2, x2

1 and x2
2 by changing one 

parameter, θ1
1. From figure 2, we understand the 

changes of the product mix for firms 1 and 2 due 
to changes in the parameter of θ1

1. When θ1
1 is 

between 0 and 1.5, firm 1 only produces product 
1, while firm 2 divides production between the 
two products, with 82% of total production for 
product 1 and 18% for product 2 . When θ1

1 is 
between 1.5 and 2,  firm 1 produces both 

products, and firm 2 increases the share of 
product 2. At the point where θ1

1 is 2, the share of 
production of products 1 and 2 for  firm 1 is equal 
(50%), while firm 2 produces only product 1. 
According to the changing value of θ1

1, the share 
of resource allocation changes drastically. This 
means that in an oligopoly market without 
cooperation, anticipating the production decisions 
of rival firms plays an important role in making 
production decisions. 



Figure 3 indicates a big discrepancy at θ1
1=2.5. 

Before the point of 2.5, firm 1 produces only 
product 1, while firm 2 produces both products, 
with 70% devoted to production of product 1 and 
30% for product 2. However, after the point 
where θ1

1=2.5, firm 2 specializes in production of 
product 1. On the other hand, firm 1 produces 
both products until the point where θ1

1=4.5. After 
θ1

1=4.5, firm 1 produces only product 2. 
According to changes in θ1

1, the product-mix for 
firms 1 and 2 are changed drastically.   

Figure 4 indicates changes in the production share 
for products 1 and 2 by the two firms less drastic 
changes than in previous example. When θ1

2 is 
between 2 and 4, the two firms produce both 
products at the same time. 

 

6. Conclusion 

Using the Nash equilibrium simulation model, we 
can generate various kinds of optimal paths for 
changing the conjecture between two firms. In the 
simulation the share of products produced varies 
according to changes in conjecture. To test the 

validity of the Nash equilibrium model, we need 
to construct an empirical model using existing 
data for oligopoly markets by estimating profit 
functions. The conjectural factor is calculated by 
the gap between observed data and estimated 
values. 

 

7. Acknowledgement 

The authors wish to thank Takashi Okamoto for 
his kind collaboration. 

 

8. References 

Fisher, R.A. The Genetical Theory of Natural 
Selection, Clarendon Press, 1930. 

Sigmund K. The maximum principle for 
replicator equations; Lotoka-Volterra 
approach to dynamic systems, Akademie 
Verlag, 1984. 

Schuster, P. and K. Sigmund, Replicator 
dynamics, J. Theo. Biol., 1983. 



 


