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Abstract: This paper is concerned with assessing the time taken by the well known reverse-shooting and 
forward-shooting algorithms to solve large-scale macroeconomic models, which are characterized by having 
the particular property known as saddle-path instability.  Given an arbitrary large-scale model about which 
we have limited information, how quick are the algorithms likely to be in solving this model?  How are 
specific model properties likely to influence the time taken by a particular algorithm? We address this 
question using a range of investment models, which have been extended to allow for multi-dimensional 
specifications of the capital stock.  Each algorithm presents a complicated exercise with a potentially unstable 
ordinary differential equation to be solved over a wide parameter space and involving a difficult search. 
There are a number of places where computational errors can be introduced and these errors can soon “blow-
up”.  It is a good exercise on which to compare the two shooting methods.  Our results provide insights into 
how the complexity of the solutions to a broad range of macroeconomic models increases with the 
dimensionality of the models.  We also investigate additional questions that might be addressed in order to 
assess which approach is the best general way to find the stable trajectory of a model with saddle-path 
properties.  We describe how econometric techniques could be used to summarize the likely success of 
competing algorithms when confronted with models exhibiting a range of properties. 
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1. INTRODUCTION 

Large-scale macroeconomic models play an 
important role in today’s society.  They are used 
for forecasting future values of a multitude of 
economic variables and for evaluating the effects 
of changes or proposed changes in government 
policy.   

When a researcher is faced with the problem of 
choosing a particular algorithm for solving a 
macroeconomic model, it is not clear which 
algorithm is the most suitable.  Sometimes 
algorithms fail; sometimes they are successful.  
Sometimes some algorithms are successful when 
others fail.  The relative success of different 
algorithms depends on characteristics of the 
model such as dimensionality, degree of non-
linearity and interactions between various models 
within the full model.  

This paper is concerned with assessing the time 
taken by the well known reverse-shooting and 
forward-shooting algorithms to solve large-scale 
macroeconomic models, which are characterized 
by having the particular property known as 
saddle-path instability.  We address this question 
using a range of investment models, which have 
been extended to allow for multi-dimensional 
specifications of the capital stock.   

2. SOLVING A MODEL WITH SADDLE-
PATH INSTABILITY 

2.1. The Two Dimensional Problem 

Consider the following two dimensional model, 
which has been linearized about : *x

   (1) *( ) ( ( ) )t t= −x A x x&

where, throughout this paper, an asterisk denotes 
a steady state value and 
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Assume that has one stable eigenvalue (A 1 0λ < ) 
and one unstable eigenvalue ( 2 0λ > ).  Let 
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Then the solution to Equation (1) is given by: 
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This solution has the property of saddle-path 
instability.  A phase diagram for a typical 



nonlinear model with saddle-path instability is 
given in Figure 1 below. 
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Figure 1. Phase Diagram for Two Dimensional 

Problem 

In order to solve the model, it is necessary to 
derive the stable arm of the saddlepath.  In the 
case of a nonlinear model this must be achieved 
by calibrating the model and using an appropriate 
algorithm to find the stable arm.  The algorithms 
described in this paper are the well known 
reverse-shooting and forward-shooting 
algorithms. 

2.2. The Higher Dimensional Problem 

Next, consider the following model, also 
linearized about : *x

    (5) *( ( ) )t= −x A x x&

where is a square matrix, and , are 

column matrices.   
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be the eigenvector of A  associated with λ .  
Then, using the Jordan decomposition, it is 
possible to write the solution to this model in the 
form: 
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Without loss of generality, start at t  where 
N is a large positive number and choose   

close to .  Then C

0 = −

)i N

N

0( )tz *z exp(i λ   is close to 
zero for 1,2,...,i m= .  If iλ  is an unstable 
eigenvalue, then exp( )i Nλ  is a large positive 
number; hence  must be close to zero.  On the 
other hand, if 

i

i

C
λ  is a stable eigenvalue, then 

Blanchard and Kahn (1980) have shown that a 
stable solution for this model can be found as 
long as there are precisely as many “jump” 
variables as there are unstable eigenvalues.  The 
initial values of these jump variables are 
determined by choosing the constants associated 
with the unstable eigenvalues equal to zero so that  

0s iC + =  for 1, 2,...,i u= . Conversely, precisely 

sm  variables are predetermined by history.  We 
refer to these latter variables as the “non-jump” 
variables.  Therefore, history determines values 
for each , where iC 1,2,...,i s= . 

Solving the higher dimensional model is then 
equivalent to finding appropriate jumps to a stable 
path that converges to the new steady-state.  This 
must be achieved by calibrating the model and 
using an appropriate algorithm to find the stable 
path. 

2.3. Forward-Shooting and Reverse-
Shooting 

The forward-shooting solution to this model is 
given by first fixing an initial value for t, given by 

, then searching over the values for  
 until a solution is found that is 

consistent with the initial values of the non-jump 
variables and arrives within a suitably small 
neighborhood of the steady-state, .  In this 
sense, the forward-shooting solution is equivalent 
to searching over a space of dimension m. 
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To find the reverse-shooting solution, it is first 
necessary to write the model in reverse time, so 
that ( ) ( )t t= −z x  and: 
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exp( )i Nλ  is close to zero; hence   can take any 
value. 
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Then, equation (7) reduces to: 
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Then a solution is found by searching over the 
values for ( ,1 2 ,..., )sC C C

( )t
( )tz

 until a solution is found 
that arrives within a suitably small neighborhood 
of the history-determined values for the non-jump 
variables of x and hence for the non-jump 
variables of .  In this sense, the reverse-
shooting solution is equivalent to searching over a 
space of dimension s . 

Thus the reverse-shooting algorithm is more 
efficient than the forward-shooting algorithm in 
the sense that the reverse-shooting algorithm 
requires searching over a smaller dimensional 
space (since s s u m< + = ).   

In the next Section, we consider a special 
example of dimension 2n where u n= = . 

3. A SPECIFIC EXAMPLE 

3.1. A Model of the Investment Decision 

Consider the investment decision of a profit- 
maximizing firm with n types of capital along the 
lines of Hayashi (1982).  The firm faces a Cobb-
Douglas production technology.  Also, adjustment 
costs are associated with the installation of new 
capital.  The magnitude of these adjustment costs 
is governed by the magnitude of parameters, b .  
The decision of the firm can then be summarized 
as follows: 

i

Choose the 'iI s  to maximize: 
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iK  = real stock of capital of type i; 

iI  = real level of investment of type i; 

1 2( , ,..., )nF K K K   = real output; 

r = real interest rate (assumed exogenous); and 

, ,ia b iα   are exogenous parameters. 

The dynamics of capital accumulation in the 
model reduce to the following set of equations: 

( )2[ ( , ) ]i i i i iq r b b q q iF= − Λ −& , for 
     (13) 

1, 2,...,i n=

[ ]( , ) 1 ( , )i i i i i i iK b q b b q K= Λ − Λ& , for  
     (14) 

1, 2,...,i n=

where  

 
1

( ) i

i

n
i

i K i
ii

aF F K
K

αα
=

= = ∏   (15) 

      

 1( , )
2

i
i i

i i

qb q
b q
−

Λ =    (16) 

The variables are the co-state variables derived 
from the firm’s optimization problem.  These co-
state variables are frequently referred to as 
Tobin’s q.  

iq

The steady-state solutions of the model then 
reduce to the following: 
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3.2. The Computational Problem 

The computational problem we examine is the 
solution of the investment model above from a 
known meaningful steady state, , to a new 
known meaningful steady state, , after an 
exogenous shock in interest rates from  to . 
The problem is to find the unique trajectory (in 
q’s and K’s) from the initial steady state to the 
final steady state resulting from the shock. 

*
0x

*x
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The fundamental problem is to find the stable 
solutions for the following dynamical system: 
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where the state vector is given by: 

[ ] [ 1 2 1 2, , ,..., , , ,...,T
n nq q q K K K= =x q K   (20) 

and the parameter vector is given by: 

  (21) [ ]1 2 1 2, , ,..., , , ,..., T
na b bα α α=p

The dimensionality of the model is m (=2n). 
Notice that the model is autonomous so that 
calendar time plays no part in the solution. 

The shock in interest rates determines the 
boundary conditions for the model and gives rise 
to the specific exercise we solve. Before the 
shock the model is at and evolves 
along a unique stable solution trajectory to 

as given in equations (17-18).  The 
problem is to find this stable trajectory.  This 
trajectory must lie on the stable manifold, so that 
the vector of co-states, q , must instantaneously 
jump onto the stable trajectory.  Hence the initial 
conditions for the co-states are not known.  The 
basic problem of this computational exercise is to 
find these co-state initial conditions.   

* * *,
T

= 0 0 0x q K

* * *,
T

= x q K

The exercise is a two-point boundary value 
problem where the aim is to find the trajectory of 
the model.  The exercise is difficult due to the 
unstable nature of the model problem.  Basically 
for the reverse-shooting algorithm we need to 
search around points “near enough” to the final 
steady state so that the solution to the model has 
transient dynamics in reverse time that are forced 
onto the stable manifold and that also satisfy the 
appropriate initial conditions.  For the forward-
shooting algorithm we search around points at the 
initial values of the capital stocks, to find an 
initial value for the q vector so that the solution to 
the model has transient dynamics in forward time 
that pass “near enough” to the final steady-state.  
Both searches will determine a solution trajectory 
and initial conditions, ( ).   (0), (0)q K

4. SOLVING THE MODEL 

4.1. Programming the Solution 

To program the exercise, software components 
are needed to solve differential equations and 
undertake searches for a range of parameter sets.  
We used Matlab (Mathworks, 2002) as it is 
ideally suited for this type of computational 
problem.  The programming was written so as to 
make use of key Matlab features.  Library 
routines (toolboxes) were used so that start-of-the 

art solvers and searches are included in the code.   
Using the extensive matrix capabilities allowed 
for exactly the same code being executed for all 
dimensionalities greater than one. 

All results were generated using Matlab 6.1 on 
the same computer: a Dell Latitude Notebook 
with Pentium 3 running at 1.3 GHz and 256Mb of 
RAM. 

4.2. Parameter Calibration 

To generate the results presented here, we 
repeatedly solved the model over a range of 
parameter sets.  A total of 100 model repetitions 
are used for each dimensionality, m (=2n).  Each 
model repetition differs only in the parameter 
calibration.  For all models a r   and 01, 0.03= =

0.05r = , and the models differ because of the 
choice of 's and 'si biα which are chosen from the 
following distributions: 
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 3 4i ib δ= +  , i n1, 2,...,=    (23) 

where , ,i iξ η δ

's and i b

are each drawn from U , the 
random uniform distribution between 0 and 1.  
The 

(0,1)

'siα determine the extent of model 
non-linearity.  Hence, by employing a range of 
values as given by equations (22-23), we are able 
to investigate the average properties of a broad 
range of nonlinear models. 

This choice in parameter sets produces a suite of 
model repetitions that have a sensible economic 
meaning and that are reasonably well behaved 
from a computational perspective, yet give a 
wide-ranging parameter space.   

4.3. Timing Experiment 

Calibrating the model and applying suitable 
stopping rules we were able to conduct timing 
experiments as the dimensionality of the model is 
allowed to increase from 2 to 40.  These 
experiments were designed to evaluate how long 
each algorithm takes to complete, irrespective of 
whether the algorithm completed successfully or 
unsuccessfully.  The results of these timing 
experiments are summarized in Figure 2. 

From the theoretical proposition derived in 
Section 2, we observed that the reverse-shooting 
algorithm is more efficient than the forward-
shooting algorithm in the sense that the reverse-
shooting algorithm requires searching over a 
smaller dimensional space.  This proposition is 
supported by the results summarized in Figure 2, 
where it is shown that, as the dimensionality of 



the model increases, the time taken to solve the  
forward-shooting algorithm grows at an 
exponentially greater rate than does the time 
taken to solve the reverse-shooting algorithm 
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Using Alternative Algorithms 

 

 
Figure 3. Reverse-Shooting: Mean Plus Two 

Standard Deviations 

The mean CPU times have been derived by 
calculating the mean of 100 replications for each 
dimensionality.  Accordingly, it is also possible to 
calculate two standard deviation confidence 
intervals for the mean times.  Of course, the 
number of replications has a major influence on 
the magnitude of the standard deviations.  In 
particular, increasing the number of replications 
will reduce the size of the confidence intervals.  
Figures 3 and 4 demonstrate that, for reverse-
shooting and forward-shooting, the sizes of the 
confidence intervals increase with the 
dimensionality of the model; hence the 
confidence intervals also increase with mean CPU 
time. 

5. MEASURING SUCCESS 

5.1. Success Rates of Competing Algorithms 

There are a number of important computational 
issues that will affect the solution to this problem, 
which is very sensitive to a whole range of 
approximations that are made in the solution 
process.  Firstly, there is the parameter space.  
The model will be reasonably well-behaved 
computationally as it is an economic problem 
(and, thus, for example, cannot have negative 
capital stocks).  But the parameter space will 
affect the size (though not the dimensionality) of 
the solution space.  Secondly there is the choice 
of the differential equation solver and thus the 
truncation errors and ability to handle different 
speeds in the solution dynamics.  Thirdly there is 
the method of searching over the candidate 
solution trajectories.  Finally there are the 
definitions of “close enough” in both the solver 
and in the search.  All these issues combine in 
producing errors and in producing the solution.  
All may increase over wider parameter spaces and 
dimensionalities. 

 
Figure 4. Forward-Shooting: Mean Plus Two 

Standard Deviations 

All these factors will compound to determine 
success or failure of each algorithm in any 
particular case.  It is possible that one algorithm 
may be more successful than another.  In 
evaluating the effectiveness of each algorithm, it 
is also important to take success into account, in 
addition to measuring CPU time. Calculation of 
success rates would be an important extension of 
this study. 

5.2. Econometric Modeling 

Econometric techniques can be used to 
summarize the likely success of alternative 
approaches when confronted by models with 
differing properties. 



We could consider the success or failure of each 
algorithm for each given dimensionality, over a 
distribution of parameter values.  We would then 
use the distribution of successes and failures to 
estimate a multivariate probit model where the 
probability of each algorithm being successful 
depends on the dimension of the model, it’s 
degree of nonlinearity, the size of the parameter 
space, and the values of key parameters.  

Suppose we are considering two algorithms, the 
forward-shooting and the reverse-shooting 
algorithms. Let be a binary variable equal to 1 
when the forward-shooting algorithm is 
successful for solving the i-th model 
configuration, and 0 when it is unsuccessful. Let   

 be a similar variable for describing the 
success of the reverse-shooting algorithm.  The i-
th model configuration is described by a vector  

, that includes the dimension of the model and 
various parameter settings.  

1iy

2iy

ix

In the probit model formulation, the probability 
that the j-th algorithm is successful for solving the 
i-th model configuration is given by  

Pr( 1) ( )T
jiy = = Φ x βi j   (24) 

where is the distribution function for a 
standard normal distribution, and the 

(.)Φ

jβ are 
vectors of unknown parameters. Noting that the 
success of one algorithm is unlikely to be 
independent of the success of the other algorithm, 
we write the probability that both algorithms are 
successful as  

  (25) 1 2 2 1Pr[( 1) ( 1)] ( , , )T T
i i i iy y= ∩ = = Φ ρx β x β2

ρwhere is the distribution function for a 
bivariate standard normal distribution with 
correlation parameter 

2 (.,., )Φ

ρ . Given the success or 
otherwise for each algorithm under a large 
number of settings for , we can proceed to 
estimate  , β   and  

ix

1β 2 ρ .  

In future studies, we plan to use Bayesian 
inference along the lines described by Chib and 
Greenberg (1998).  In addition to estimating the 
probability of success for each (and both) 
algorithms for a range of settings of , using 
Bayesian inference allows us to express 
uncertainty about these probabilities and to find 
probability distributions for the ranking of the 
algorithms in terms of their likely success.  It will 
be possible to consider how factors such as the 
nonlinearity of the models, the size of the 
parameter space and the dimensionality of the 
problem influence the success rate of the 
competing algorithms.  This will enable us to 

evaluate how the likely success rate changes as 
the dimensionality of the model increases and as 
the extent of non-linearity of the model increases. 

ix

6. CONCLUDING REMARKS 

This paper has used two well-known algorithms 
to solve a multi-dimensional investment model.  
We have examined the CPU time taken by the 
two algorithms as the dimensionality of the model 
is allowed to increase.  We have suggested 
theoretically, and also demonstrated 
computationally, that the reverse-shooting 
algorithm can be significantly faster than the 
forward-shooting algorithm. 

A more complete analysis of this topic would take 
into account the fact that the two algorithms may 
have significantly different success rates.  The 
penultimate Section of this paper has described an 
econometric framework where this question could 
be addressed in a systematic manner. 
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