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Abstract This paper analyses the impact of corruption in a timber industry by comparing stochastic and determinis-
tic approximations of a ‘log poaching-enforcement’ difference game. In the paper it is argued that corruption leads
to certainty about the effectiveness of enforcement efforts, a situation best represented by a deterministic game.
By adding uncertainty, therefore, some light is shed on the impact of corruption. The model is hard to solve ana-
lytically, so results are demonstrated by developing heuristic genetic algorithms. The results show that increasing
uncertainty induces a government to spend more on enforcement and an illegal logger to harvest less.
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1. INTRODUCTION

This paper extends the use of genetic algorithms (GA)
to examine difference games with stochastic elements.
This paper then analyses the impact of corruption in
a timber industry by comparing stochastic and deter-
ministic behaviour of an illegal logger and govern-
ment enforcer.

In many developing countries, even though forest
property rights are officially held by the government,
forests are effectively utilised as an open-access re-
source (Clarke et al., 1993). Even if a govern-
ment chooses to enforce its property rights, corrup-
tion associated with the forest industries of such coun-
tries makes enforcing property rights difficult (Dud-
ley et al., 1995). Often the rhetoric of imposing fines
on illegal loggers is replaced by a system where log-
gers circumvent fines by paying bribes. The certainty
of the bribe payment, as distinct from the uncertainty
of being caught and fined, means that an illegal log-
ger can plan its harvesting decisions in a deterministic
framework. This justification has previously been pro-
posed for the use of a deterministic approach in exam-
ining deforestation (McAllister et al., 2001). There-
fore, assuming that the deterministic framework rep-
resents a system where enforcement is not genuine,
and that additional enforcement uncertainty simulates
the impact of a more genuine system of property rights

enforcement, then a comparison of results should help
examine the impact of corruption.

2. MODEL

The model presented here employs a two-player dif-
ference game played over an infinite time horizon
with annual time steps The logger represents an agent
which makes profits by illegal logging. The govern-
ment represents a central government which makes
profits from non-timber forest benefitsxγ , and royal-
tiesr from legal loggingh in the region. The govern-
ment owns the property rights on the remaining area
of forest stockx. The government enforces its prop-
erty rights by spending money to detect illegal loggers
k and then applying a fineϑ (Table 1).

Despite the enforcement efforts of the government, the
logger may have an incentive to illegally harvest. This
incentive may occur for two reasons. First, particu-
larly in developing countries, enforcement may not be
genuine. Instead bribes may be paid to circumvent the
rhetoric of fines. Second, even where enforcement is
genuine, it is unlikely to be optimal for a government
to spend at such levels such to completely enforce its
property rights (Zhang, 2001; McAllister et al., 2001).



Table 1: Notation and assumed parameter values

Control variables
h Logger’s harvest rate (area)
k Government’s enforcement expenditure
State variables
x Stock of remaining forest (area)
Functions
Q(·) Government logging quotas (area)
F (·) Forest regrowth (area)
φ(·) Chance of getting caught and fined
Coefficients
β0 Effectiveness of enforcement expenditure 50
ϑ ‘Fine’ imposed for illegal logging 2
r Government logging royalties (per area) 0.7
α Intrinsic rate of forest growth 0.2
γ Non-timber forest benefits coefficient 0.25
Υ Quota setting coefficient 30
δ Players’ discount rate 0.10
p Timber harvesting revenue (per area) 1

The objective functionsLh, for the logger, andGk, for
the government are given below. In these functions all
players discount future profits by 1

(1+δ)t in order to
account for their time preference of money.

Lh =
∞∑

t=0

(
pht − φ(xt, ht, kt)ϑ

(1 + δ)t

)
(1)

Gk =
∞∑

t=0

(
Q(xt)r + xγ

t + φ(xt, ht, kt)ϑ− kt

(1 + δ)t

)
(2)

subject to,

∆xt = F (xt)− h−Q(xt),

F (xt) = αxt

(
1− xt

100

)
,

Q(xt) =
xtF (xt)

Υ
,

φ(xt, ht, kt) = 1− exp
(
−kthtβ

xt − ht

)
,

γ ∈ [0, 1],
xt, ht ≥ 0.

Here φ is the chance of being caught and fined for
illegal logging,Q is the unit log harvest quota level
set by the government,F is forest regrowth andβ is
the effectiveness of government forest property rights
enforcement expenditure. The discrete time period is
represented by thet subscript.

When both players are uncertain about the effective-
ness of enforcement expenditure (β) φ(xt, ht, kt) is
replaced throughout by,

φ(xt, ht, kt, βt) = 1− exp

(
−kthtβt

xt − ht

)
(3)

where,βt = β0 + ℵ(0, σβ0) and whereℵ(0, σβ0) is
a normally distributed random variable with a mean
of zero and a standard deviation ofσβ0, subject to
βt > 0.

3. METHOD

Derivation of analytical results from the above model
is not possible. A GA approach is therefore used
to numerically demonstrate theoretical aspects of the
model.Özyildirim (1996) was first to use parallel GAs
to solve deterministic dynamic games. In this paper
the aim is to apply this deterministic approach, then
attempt to introduce uncertainty into the analysis. The
algorithm proposed bÿOzyildirim involves a popula-
tion of possible strategies for each control variable (k
andh in this case). The populations are co-evolved by
the GA. Initially, each player’s population of strategies
is generated randomly. The fitness of each individ-
ual strategy is then determined by playing it against
a randomly chosen strategy from the other player’s
population. These fitnesses are then used for select-
ing parents for the next generation. To approximate
an infinite time horizon, the game is played to some
finite periodT , with the approximated steady states
(assumed stable) then used to approximate fitnesses to
perpetuity (McAllister and Bulmer, 2002). Note that
the number of generationsG used is unrelated to the
number of discrete time periodsT used in the model,
except in that by using more time periods, the size
of the problem increases exponentially which requires
more generations of evolution to achieve convergence
of the algorithm.

Uncertainty enters the system because neither the gov-
ernment nor logger can be sure of just how effective
enforcement expenditure will be in the future. As dis-
cussed above, the parameterβ is therefore replaced
with the memoryless stochastic parameterβt. For
each generation of the GA, a sequence of normally
distributed random numbers is generated using the
Box-Muller transformation (Box and Muller, 1958).
This sequence is used to generateβt for both play-
ers’ population of strategies in a given generation of
the GA. In subsequent generations, the stochastic se-
quence is regenerated. The algorithm can be sum-
marised by the following steps (see McAllister and
Bulmer 2000 for further details):

1. Initialise a random population of strategy vec-
tors, and update a shared memory with a ran-
dom strategy vector;



2. (Re)generate a stochastic process forβ overT
time periods, setting the final termβT in the
process as zero (as zero is the expected stochas-
tic mean to perpetuity);

3. Calculate the fitness of each strategy vector
against the strategies of other controls held in
the shared memory, using the same generated
stochastic process;

4. Perform cross-over and mutation to create a
new population;

5. Wait until all other parallel GAs have completed
their respective fitness calculations;

6. Update the shared memory with the fittest strat-
egy (thechampion);

7. If the maximum number of generationsG is
reached then stop, otherwise return to step 2.

Greater uncertainty inβt means that each player main-
tains a broader range of strategies in their population.
Initially one may expect this range to contain the de-
terministic solution. However, if tending to one side
of the deterministic solution exposes a player to the
risk of incurring greater costs than the corresponding
“risk” of reduced costs on the alternate side, then the
strategy populations will ultimately converge towards
the side that minimises the exposure to unfavourable
outcomes. The GA employed here scales down mu-
tation (Michalewicz, 1999), so towards the end of the
evolution of the population of strategies each player
consolidates what they have learned throughG gener-
ations of different stochastic processes.

4. RESULTS

Even though the game is solved over infinite time,
only the first time period is analysed here. The anal-
ysis has been limited in order to be concise. The
first period is considered the most relevant because
the game solutions relate to planned behavioural de-
cisions (i.e. open-loop equilibria). The gap between
what is planned and what eventuates is assumed to
widen ast increases. Therefore, by analysing the first
period, actual rather than planned behaviour can more
closely be examined. In seeking to analyse the impact
of corruption, the choice variables analysed are the
level of enforcement expenditurek and illegal log har-
vesth. Total payoffs of both the logger (equation 1)
and the government (equation 2) are also considered.
Because the model is demonstrated using numerical
approximations, parameters must be assigned values.
Sensible but arbitrary parameters used are presented
in Table 1 above.

Table 2 summarises the results. The deterministic re-
sults are considered first. Because the numerical ap-
proximations are evolved through random mutation,
the algorithm is unlikely to approximate the same so-
lution twice. Figure 1 shows a histogram based on 100
runs of the GA. While subsequent runs of the GA ap-
proximate differently, the results are very similar, the
95 confidence intervals being extremely tight.

The stochastic approximations appear far more
broadly distributed than the deterministic equivalents.
This is to be expected because here each run of the
GA is faced with unique stochastic properties. Table 2
summaries the distribution of approximations from
100 runs of the GA. Table 2 shows that when uncer-
tainty contributes to how the each player’s strategy set
evolves, 95 percent of approximations forh0 andk0

lay within 0.443908 and 0.444635 , and 0.180482 and
0.180872 respectively whenσ = 0.1. As σ increases
the distribution of the approximations increases, while
the mean ofh0 andk0 decreases and increases respec-
tively.

Simulation results are graphically presented in Fig-
ure 2. This figure demonstrates how in time period
zero increased uncertainty reduces the harvest deci-
sion and increases the government’s enforcement ex-
penditure decision.
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Figure 1: Distribution of deterministic approxima-
tionst = 0



Table 2: Deterministic and stochastic numerical open-loop approximations for the first discrete time period

standard
mean deviation (s) lower-95%a upper-95%a range

Deterministic (σ = 0)
· Harvest (h0) 0.452644 0.000000 0.452644 0.452644 0.000000
· Enforcement (k0) 0.169530 0.000000 0.169530 0.169530 0.000000
Stochastic
σ = 0.1
· Harvest (h0) 0.444310 0.001619 0.443908 0.444635 0.000727
· Enforcement (k0) 0.180683 0.001005 0.180482 0.180872 0.000390
σ = 0.2
· Harvest (h0) 0.439607 0.002185 0.439087 0.440052 0.000965
· Enforcement (k0) 0.190553 0.001685 0.190239 0.190917 0.000679
σ = 0.3
· Harvest (h0) 0.433757 0.002952 0.433039 0.434455 0.001416
· Enforcement (k0) 0.198703 0.002296 0.198155 0.199275 0.001120
σ = 0.4
· Harvest (h0) 0.427539 0.003840 0.426900 0.428105 0.001205
· Enforcement (k0) 0.209120 0.003030 0.208473 0.209832 0.001359

a Confidence intervals constructed by applying t-percentile method bootstraps using 10,000 re-samples.

Finally, Figure 3 shows the impact of uncertainty on
the payoffs yielded by both players (equations 1 and
2). Figure 3 shows that as uncertainty increases, the
changes the respective players’ choice variables lead
(Figures 3) to a decrease in both logger and gov-
ernment payoffs. This may be counter-intuitive be-
cause one may expect that if illegal harvest activity
decreases, then government profits would increase.
However, in this complex system it seems that added
uncertainty induces additional expenditure on prop-
erty rights enforcement. Caution must also be used
in interpreting the level of the results because the pa-
rameter values used are not calibrated.

5. COMPUTATIONAL SUMMARY

The GA was implemented using the computer pro-
gramming language C. The compiled code was run
on a multi-user SGI Origin 2000 computer with 64
MIPS R10000 CPU’s and 16 Gigabytes of memory.
For each level ofσ, the GA was run 100 times us-
ing two million generations. On average this code
took 24 hours to complete, depending largely on the
number of other batch jobs running. The program al-
located no more than 3 Megabytes of memory. All
confidence intervals were constructed by applyingt-
percentile method bootstraps using 10000 re-samples.
The bootstraps were performed inMatlab.
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Figure 2: Deterministic and stochastic approxima-
tions represented for variousσ
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Figure 3: Average approximations and payoffs for var-
iousσ

6. GAs AND UNCERTAINTY

Uncertainty enters the model presented above in two
manners. The parameterβt is stochastic, but the GA
itself is also stochastic, since random mutation drives
the evolution towards its approximate solutions. In
some applications of GAs in economics, random mu-
tation is maintained throughout all stages of the GA in
order to analyse the adaptive nature of learning (Ari-
fovic, 1995). However here, the random mutation is
used only to facilitate solution evolution, and its in-
fluence is scaled down such to eventually minimise its
influence on the final approximation. Any remaining
influence of the random mutation is GA error. The
GA used here uses two million generations to allow
the algorithm to minimise the GA error. It is useful to
consider whether this number of generationsG is suf-
ficient to minimise the GA error. To do this the model
was run usingσ = 0.1 and variousG of the GA. Fig-
ure 4 shows the confidence intervals of the standard
errors of GA approximations fork0 andh0.

Since the intervals bound a standard error from a
stochastic model, they remain positive in all cases.
The standard error however contains two parts. One
part, which the GA does not necessarily seek to min-
imise, is the error introduced by the stochastic pa-

rameterβt. The other part is the GA error, which
is minimised by the algorithm given enough genera-
tions. Figure 4 shows that asG increases, the stan-
dard errors drop sharply at first, then stabilise. One
may conclude that the initial drop in the standard er-
ror signifies a reduction in the GA error. The level at
which the standard error stabilises may then represent
the error introduced by the stochastic parameterβt.
Based on these observations, it seems that two million
generations appears sufficient to accurately represent
the stochastic approximations.
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Figure 4: Confidence intervals of the standard error
against the number GA generations

7. POLICY IMPLICATIONS AND CONCLU-
SIONS

Despite the arbitrary nature of the parameter values
used in the above model, the model results demon-
strate the theory contained in the model. The results
from the model indicate that when the effectiveness
of enforcement expenditure is uncertain (i.e. stochas-
tic), illegal loggers will harvest less compared to when
the effectiveness is certain (i.e. deterministic). Gen-
erally, when enforcement is considered, the difference
between the uncertain and deterministic cases may be
that the case of uncertainty better reflects reality. In
many developing countries, however, a government’s



efforts to enforce its property rights is related more to
rhetoric than to reality. Consequently the uncertainty
inherent in enforcement may be replaced by certainty
in bribe payments.

Corruption within the forest industries in develop-
ing countries is secretive (Lang, 2001) and little is
known about the level of bribe payments, which them-
selves may take many forms (Walker, 1999, p.164).
Therefore further modelling efforts are required be-
fore strong conclusions can be drawn, particularly
with regards to the impact on payoffs. Neverthe-
less, by arguing that deterministic enforcement rep-
resents the certainty of bribe payments while the un-
certain counterpart represents genuine efforts to en-
force forest property rights, this paper has demon-
strated that corruption may lead to higher rates of for-
est extraction. This paper has also demonstrated an
approach to capturing uncertainty when GAs are used
to approximate non-cooperative open-loop difference
games played over infinite time.
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