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Abstract: We examine properties of estimators of count data model with endogenous switching. The 
estimation of the count data model that accommodates endogenous switching can be accomplished by Full 
Information Maximum Likelihood (FIML). However, FIML estimation requires fully and correctly specified 
model and is computationally burdensome. Alternative estimation methods do not require fully specified 
model have been proposed. The typical methods are Two Stage Method of moments (TSM) and Nonlinear 
Weighted Least Squares (NWLS). The properties of these estimators have never been studied so far. In this 
paper, we compared the finite sample properties of these estimators under correct and incorrect model 
specifications using Monte Carlo experiments. We find that FIML estimator has the smallest standard 
deviation and TSM estimator has the largest when the model is correctly specified. This property also holds 
under incorrect model specification. An important point to emphasize is the large standard deviation of the 
estimate of endogeneity suggests that TSM and NWLS estimations result in an anomalous estimate of 
endogeneity very frequent even under the correct specification. 

Keywords: Count data; endogenous switching; Full maximum information; Two stage method of moment; 
Nonlinear weighted least squares; Monte Carlo experiment 

 

1. INTRODUCTION 2. MODEL 

Count data modeling has been widely used in 
empirical analysis. General surveys of count data 
analysis are given in Cameron and Trivedi (1998) 
and Winkelmann (2000). The standard model for 
count data is based on a Poisson regression model. 
Several extensions of the model have been 
proposed to deal with overdispersion and sample 
selectivity. Terza (1998) proposed a count data 
model with sample selection. The proposed 
estimation methods are Full Information 
Maximum Likelihood (FIML), Two Stage 
Method of moment (TSM) and Nonlinear 
Weighted Least Squares (NWLS). On theoretical 
point of view, the FIML estimator is most 
efficient among three estimators when the model 
is correctly specified. However, count data often 
exhibits non-Poisson features. The properties of 
these estimators have never been studied so far. In 
this paper we examine these estimators under 
correct and incorrect model specifications by 
Monte Carlo experiments. 

2.1. Poisson regression model 

A Poisson regression model with heterogeneity is 
used for count data that exhibits non-Poisson 
feature such as overdispersion. The probability 
distribution function of count data  given a 

 vector of explanatory variable  is  
iy
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where  is a conditional mean function iλ
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The error term  represents the heterogeneity 
and α is a  vector of unknown parameter to 
be estimated. (1) and (2) are jointly define the 
Poisson regression model with heterogeneity. 
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2.2. Poisson model with heterogeneity and 
endogenous switching 

The outline of this paper is as follows. Section 2 
details the count data model. In section 3, we 
summarize the estimation of the count data model. 
In section 4, some Monte Carlo experiments are 
conducted to compare the estimators. Section 5 
contains concluding remarks. 

Terza (1998) proposed the count model with 
endogenous switching. The model consists of a 
conditional Poisson probability distribution and a 
switching variable . The conditional probability 

distribution function of  is 
ic
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where  and  are the weight and the 
evaluation point of Gauss-Hermite approximation,  
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and the conditional mean function is 
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and where β is an unknown parameter. The switching 

variable  is characterized as ic
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3. ESTIMATION 
where c  is latent random variable and ν  is an 
error term. z  and γ are a (  vector of 
observable explanatory variables and their 
unknown coefficient vector, respectively. The 
potential endogeneity of c  is represented using a 
correlation coefficient ρ between two error terms 

 and . The joint distribution of  and  is 
assumed to be normal with mean vector zero and 
variance-covariance matrix 
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In this section, we summarize Full Information 
Maximum Likelihood (FIML), Two Stage 
Method of moments (TSM) and Nonlinear 
Weighted Least Squares (NWLS) estimators 
proposed in Terza (1998). 

3.1. FIML 
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FIML estimation is based on the likelihood, 
which is defined by the approximated joint 
probability function (8). We can derive the first 
and second partial derivatives of unknown 
parameters in (8). The maximization of the 
likelihood function is conducted by numerical 
optimization procedure. The variance of  is normalized to one since the 

switching equation (5) identifies γ only up to a 
scale factor. Under the joint normality assumption, 
we have the conditional joint probability 
distribution function of and c  as follow 

iν
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3.2. TSM 

For TSM estimation, we use a moment condition  
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which is much weaker assumption of distribution 
of the error term in previous section. Based on 
(11), we can represent  iiiiii dcc εεφεε )())}(1)(1()({ ** Φ−−+Φ×      (7) 

iiiii cxy ηεβα +++= }exp{ '     (12) where )1/})/(({)( 2'* ρεσργε −+Φ=Φ iii z , 
)(⋅φ and Φ  are the probability density function 

and the cumulative distribution function of 
standard normal distribution, respectively. 

)(⋅ where iη  is a random variable such that  

0],,,|[ =iiiii czxE εη .     (13) 

The conditional moment of  is given as iyTo obtain a maximum likelihood estimator of 
unknown parameters in the model, we have to 
maximize a likelihood function. Unfortunately the 
joint probability density function (7) cannot 
evaluate in closed form. A typical procedure to 
deal with such difficulty is approximation of (7) 
using Gauss-Hermite quadrature. The details of 
the procedure are given in Winkelmann (2000). 
After change of variable )2/( σες ii = , we 
obtain  
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After tedious calculations, we obtain 
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4.1. Design 
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A collection of count dependent variable {  is 
generated from a conditional Poisson distribution 

n
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(12) is rewritten using (15) as 
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where 
and a conditional mean function  
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The estimation of unknown parameters in (16) 
can be conducted by two-stage technique. The 
unknown parameter γ in the switching equation 
(5) can be estimated by a simple probit estimation 
method. We define the probit estimator of γ as γ̂  
in the first-stage. The second-stage estimator of 

 can be obtained by applying nonlinear 
least squares to 

'*' )  ( τθ

The switching variable  is characterized as ic
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where parameters in the model set to be 
) , , ,( 21 γγβα =(1.0, 1.0, 1.0, 2.0). The variance-

covariance matrix of the error terms iε  and iν  is 
set as 

0**' )ˆ,(}exp{ iiii eJy += γτψθ     (17) 
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The estimator of ρ is given by .ˆ/ˆˆ στρ =  See 
Terza (1998) for details. and the correlation coefficient ρ=0.4. The 

explanatory variable x  is generated from the 
uniform distribution over the interval [-0.5, 0.5] 
and  is generated from the standard normal 
distribution. The sample size n is set to be 500. 
We conduct the experiments 1000 times to see the 
finite sample properties of estimators. 

i

iz

3.3. NWLS 

Terza (1998) gave an exact form of conditional 
variance of the nonlinear least squares error term 
when (3) and (4) are correct specification. The 
conditional variance is 

),(}exp{),,|var( **' γτψθ iiiiiii Jczxev ==  According to the error terms iε  and iν , we 
consider the two cases. In case 1, the joint 
distribution iε  and iν  is set to be normal with 
zero mean and the variance-covariance matrix 
described above. This is a correct specification. 
On the other hand, case 2 deals with the 
misspecification. We assume that the distribution 
of iν  is standard normal, however that of iε  is 
no-normal distribution. The distribution of 

}iexp{ε  is assumed to be Gamma. 

),(}2{exp{})(exp{ 2*222**' γτψψτσθ iiiJ −−+  

where   ).,2(}2exp{ 2* γτψτψ ii =

Substituting TSM estimators into the unknown 
parameters in the conditional variance , we 
obtain . NWLS estimator can be given by 
minimizing  
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    (18) 4.2. Bivariate distribution 

In the case 2, we have to generate two series of 
random variables with different distribution and 
correlation coefficient ρ. Lee (1983) proposed 
that the bivariate distribution with different 
marginal distributions and correlation ρ. Suppose 
the marginal distributions of iε  and iν  are )(1 εF  
and )(2 νF . The bivariate distribution is given by 

with respect to . '*' )  ( τθ

4. MONTE CARLO EXPERIMENTS 

We examine the properties of FIML, TSM and 
NWLS estimators given in the previous section 
using Monte Carlo experiments. We also examine 
whether these estimators lead to substantially 
different results and whether these estimators are 
robust with respect to the choice of a particular 
distributional assumption. 
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Table 2: Means and standard deviations (in 
parentheses) of estimates for case 2. 

where );  ,  ( ρ⋅⋅B  is the bivariate cumulative 
normal distribution function with mean zero, 
variance one, and correlation ρ. First, we generate 
random variables iε  and iν  from their marginal 
distribution. Using two independent normal 
random variables  and 

, we obtain bivariate normal 
random variables with correlation ρ. Finally, we 
obtain two random variables F  and 

. The correlation coefficient of these 
random variables is ρ. The random number 
generation that described above is applied for the 
case 2. 
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 true value FIML TSM NWLS 

α 1.0 1.003 
(0.114) 

1.000 
(0.125) 

0.996 
(0.114)

β 1.0 1.015 
(0.051) 

0.991 
(0.097) 

0.989 
(0.091)

γ1 1.0 1.006 
(0.108) 

1.007 
(0.108) 

1.007 
(0.108)

γ2 2.0 2.021 
(0.176) 

2.021 
(0.176) 

2.021 
(0.176)

σ 0.3 0.306 
(0.082) 

0.317 
(0.221) 

0.325 
(0.214)

ρ 0.4 0.425 
(0.370) 

0.794 
(1.303) 

0.870 
(1.268)4.3. Experiment results 

 
The results of the simulations for the case 1 
summarized in Table 1. In Table 1, we see that 
the biases and standard deviations of estimates by 
FIML are the smallest and those of TSM are the 
biggest. The properties of estimates of α, β,  γ1 
and γ2 in the mean function and the switching 
equation and the estimates of the standard 
deviation σ of error term in mean function are 
almost same among FIML, TSM and NWLS. It is 
noted that the biases and standard deviations of 
TSM and NWLS estimates of the correlation 
coefficient ρ are quite large. The case of 
misspecification is summarized in Table 2. Result 
is similar to the case 1 even though the 
distribution supposed for model is not the same as 
true data distribution. One possible explanation 
for this tendency is that the shape of distribution 
of simulated data is not much different from one 
supposed for model specification. 

It is noted that the estimates of α and β  in the 
mean function, and those of γ1 and γ2 in the 
switching equation are estimated well even 
though TSM and NWLS estimates of ρ are biased 
in both case 1 and case 2. Table 3 and 4 show 
relative standard deviations of estimator with 
respect to those of FIML. We see that the 
estimates of FIML are efficient even when the 
specification is not correct 

 

Table 3: Relative standard deviations of estimates 
for case 1. 

 FIML TSM NWLS 

α 1.00 1.08 1.00 

β 1.00 1.79 1.71 

γ1 1.00 1.00 1.00 

γ2 1.00 1.00 1.00 

σ 1.00 2.56 2.50 

ρ 1.00 3.35 3.25 

 

Table 1: Means and standard deviations (in 
parentheses) of estimates for case 1. 

 true value FIML TSM NWLS 

α 1.0 1.001 
(0.113) 

0.998 
(0.122) 

0.994 
(0.113) 

β 1.0 1.003 
(0.048) 

0.983 
(0.086) 

0.983 
(0.082) 

γ1 1.0 1.012 
(0.107) 

1.012 
(0.107) 

1.012 
(0.107) 

γ2 2.0 2.019 
(0.177) 

2.021 
(0.177) 

2.021 
(0.177) 

σ 0.3 0.272 
(0.084) 

0.279 
(0.215) 

0.288 
(0.210) 

ρ 0.4 0.439 
(0.423) 

0.937 
(1.416) 

1.031 
(1.373) 

 

Table 4: Relative standard deviations of estimates 
for case 2. 

 FIML TSM NWLS 

α 1.00 1.10 1.00 

β 1.00 1.90 1.78 

γ1 1.00 1.00 1.00 

γ2 1.00 1.00 1.00 

σ 1.00 2.70 2.61 

ρ 1.00 3.52 3.43 
  



5. CONCLUSIONS 

This paper has examined the properties of 
estimators of the count data model with 
endogenous switching proposed in Terza (1998). 
The results of Monte Carlo experiments show that 
FIML estimator has the smallest standard 
deviation and TSM estimator has the largest when 
the model specification is correct. This property 
also holds under incorrect model specification. 
An important point to emphasize is the large 
standard deviation of the estimate of endogeneity 
ρ suggests that TSM and NWLS estimations 
result in an anomalous estimate of endogeneity 
very frequent even under correct specification. 

 

6. ACKNOWLEDGEMENTS 

This research was partially supported by the 
Ministry of Education, Culture, Sports, Science 
and Technology: Grants-in-Aid for Scientific 
Research (C)(2), 13630031, 2002.  

 

7. REFERENCES 

Cameron, A. C. and P. K. Trivedi, Regression 
analysis of count data, Cambridge 
University Press, 1998. 

Kozumi, H., A bayesian analysis of endogenous 
switching models for count data, Journal 
of the Japan Statistical Society, 32(2), 141-
154, 2002. 

Lee, L. F., Generalize econometric models with 
selectivity, Econometrica, 51(2), 507-512, 
1983. 

Terza, J.V., Estimating count data models with 
endogenous switching: Sample selection 
and endogenous treatment effects, Journal 
of Econometrics, 84, 129-154, 1998. 

Winkelmann, R., Count data models with 
selectivity, Econometric Reviews, 17(4), 
339-359, 1998. 

Winkelmann, R., Econometric analysis of count 
data, 3rd edition, Springer, 2000. 


	INTRODUCTION
	MODEL
	Poisson regression model
	Poisson model with heterogeneity and endogenous switching

	ESTIMATION
	FIML
	TSM
	NWLS

	MONTE CARLO EXPERIMENTS
	Design
	Bivariate distribution
	Experiment results

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

