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Abstract: Data envelopment Analysis (DEA) is a kind of non-parametric and non-statistical tools for 
measuring technological efficiencies.  Recently, several researchers adopt this method to evaluate the 
efficiencies of firms, public utilities, and so on.  Because this method is not based on the statistical setup, we 
cannot test hypothesis where the production function should be assumed.  In this paper, we propose several 
tests for returns to scale using different DEA models.  We construct test statistics for the hypothesis about the 
returns to scale in production technology without any assumption on the true distribution of the technical 
inefficiencies.  We conduct a simulation study on the size and power of the proposed test statistics under 
several conditions: Cobb-Douglas production function with half-normally and exponentially distributed error 
terms. 
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2. NEW TESTS FOR RETURNS TO 
SCALE USING DIFFERENT DEA 
MODELS 

1. INTRODUCTION 

Data Envelopment Analysis (DEA) has been 
applied to evaluate the efficiencies in the 
economic activities like public or private service 
production.  This is a kind of non-parametric and 
non-statistical tools, so the estimated 
inefficiencies depend on the assumption whether 
the production technology is constant returns to 
scale or not.  From the researchers’ or policy 
makers’ point of view, whether the production 
technology is increasing or decreasing returns to 
the scale is one of the most important 
characteristics to make decisions.  However, only 
few attempts have been made at the DEA-based 
statistical tests for the returns to scale.  Banker 
(1996) surveys statistical tests using DEA but 
these tests are not enough to use in an empirical 
research because their asymptotic distribution and 
finite sample properties of them are not clear.  
Generally, DEA is a kind of non-parametric and 
non-statistical tools, so it is difficult to obtain 
their asymptotic distribution.  Therefore, in the 
present paper, we propose some testing 
procedures and conduct a simulation study to 
investigate their finite sample properties. 

2.1. DEA models with different assumption 
of returns to scale 

There are some models with different assumption 
in DEA; CCR, IRS, DRS, and BCC.  (See Cooper, 
Seiford and Tone (2000).)  CCR model is 
proposed by Charnes, Cooper and Rhodes (1978) 
and is assumed the frontier to be constant returns 
to scale.  The input oriented CCR model is written 
as the following linear programming problem: 
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Mm ,,1 K=  The paper consists as follows.  Section 2 
introduces the new testing procedures for the 
returns to scale.  Section 3 explains the setups of 
the Monte Carlo simulation. Section 4 presents 
simulation results.  Section 5 is a concluding 
remark.   
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where j=1,…,J (number of units), m=1,…,M 
(number of outputs), n=1,…,N (number of inputs).  



IRS, DRS and BCC models have slightly different  
assumptions in Equation 1; they include a 
constraint on the multiplier, iλ .  IRS model 
assumes that the frontier exhibits increasing 

returns to scale:  .  DRS model assumes 

the frontier to be decreasing returns to scale:   

.  BCC model, developed by Banker, 

Charnes and Cooper (1984), assumes the frontier 

to be variable returns to scale:  .   
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2.2. Relationships between the true 
production function and the efficiency scores 
in DEA models 

We often obtain different efficiency scores by 
applying different DEA models because there 
exists the difference between the returns to scale 
in the true production technology and those 
assumed by the DEA model that we applied.  In 
the present paper, to simplify the explanation, we 
figure the relationships between the true 
production technology and the estimated 
efficiency scores with one input and one output 
case as an example.   

Firstly, let us see the case that the true frontier 
production function, y , is increasing 
returns to scale.  See Figure 1.  All points from A 
to F represent productions.  Point A, B, C and D 
are on the true frontier function.  The estimated 
frontiers by DEA models are as follows.  The 
estimated frontier by CCR model is a straight line 
Ol passing through point D, the DRS model 
frontier is ODd, the IRS model frontier is aAl1, 
and the BCC model frontier is a linear envelop, 
aADd.  The efficiency score of each point varies 
according to the DEA models.  For example, the 
efficiency score of point B estimated by CCR or 
that estimated by DRS expresses ratio of Bb1 to 
b1b2, that estimated by IRS or BCC model is ratio 
of Bb to bb.  The former is lower than the latter.  
Then, let 

)(xf=

iθ be the mean of the estimated 
efficiencies from model i (for i=CCR, IRS, DRS, 
BCC), the following inequality tends to hold; 

CCRDRSIRSBCC θ≥θ>θ≥θ .             (2) 

The mean of BCC scores is the highest and the 
mean of CCR is the lowest among all of means 
because of the inefficient production such as point 
A or F.   Inequality between the mean of IRS 
scores and that of DRS scores holds except in 

some cases; there are some units with large 
inefficiencies which are improved in DRS model. 
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Figure 1. Increasing returns to scale technology 

and DEA models. 

Secondly, let us see the case that the true frontier 
production function is decreasing returns to scale 
as Figure 2.  The estimated frontiers in DEA 
models are as follows.  The CCR model frontier is 
a straight line Ol passing through point A, the IRS 
model frontier is aAl, the DRS model frontier is 
OABCDd, and the BCC model frontier is a linear 
envelop, aOABCDd.  Among the means, the 
following inequality tends to hold; 

CCRIRSDRSBCC θ≥θ>θ≥θ .        (3) 

It is same as increasing returns to scale frontier 
that the highest mean is the BCC mean and the 
lowest is the CCR mean.  However, inequality 
between the IRS and DRS means is different; the 
DRS mean is higher than the IRS mean except in 
some circumstances. 
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Figure 2. Decreasing returns to scale technology 

and DEA models. 

Lastly, let us see the case that the true frontier 
function is constant returns to scale.  In this case, 
the following inequality tends to hold;   

CCRDRSIRSBCC θ≥θθ≥θ ),( .         (4) 

If all production units are efficient, all of the 
means are same and equal to one.  When there are 
inefficient units, the highest and the lowest mean 



are same as other cases: the mean of BCC scores 
is highest and the mean of CCR scores is lowest 
and the relationship between the IRS and DRS 
means is not clear.  But, we can expect all the 
means take closer values in case of constant 
returns to scale. 

H0: DRSIRS θ=θ    vs.    H1: IRSDRS θ>θ . 

∆  in Equation 5 is replaced with IRSDRS θ−θ≡∆ . 

 

B)  Sign test of the probability that number of 
units, whose scores are improved in IRS than 
DRS, is more than half of all units   

In summary, we can see the following points from 
the examples above.  Firstly, it holds always that 
the BCC mean is the highest and the CCR mean is 
the lowest.  Secondly, the IRS mean is higher 
than the DRS mean in case of increasing returns 
to scale except some circumstances.  Thirdly, the 
DRS mean is larger than the IRS mean.  Finally, 
all the means take closer value in case of constant 
returns to scale.   

・Case of 2)(# nDRS
i

IRS
i >θ>θ : 

H0:  5.0)( =θ>θ DRS
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H1: . 5.0)( >θ>θ DRS
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The test statistics is: 

2.3. New tests for returns to scale using DEA 
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We propose some testing procedures for returns 
to scale using relationship among the means of 
scores estimated by different models.  We will 
test the equality of DRSIRS θ=θ  and 

CCRBCC θ=θ  using the test of equality of means 
or sign test.  The reason why we adopt sign test is 
that means can be easily affected by outliers.  
When the alternative hypothesis that 

DRSIRS θ>θ  is accepted, the true frontier 
function can be regard as increasing returns to 
scale.  When the hypothesis that IRSDRS θ>θ  is 
accepted, the true frontier function can be regard 
as decreasing returns to scale.  When the 
hypothesis that DRSIRS θ=θ  or CCRBCC θ=θ  is 
not rejected, the true frontier function can be 
regard as constant returns to scale.  We suggest 
the following new four testing procedures. 

where X is the number of units whose IRS score 
is larger than DRS score, n is the number of units.   

Reject the null hypothesis when the test 
statistics is larger than 1.645, the upper 5% 
critical value from standard normal distribution. 

・Case that IRSDRS θ>θ : 

H0:  5.0)( =θ>θ IRS
i

DRS
iP

H1:  5.0)( >θ>θ IRS
i

DRS
iP

and X is replaced with the number of units whose 
DRS score is larger than IRS score. 

 

C)  Test of equality of the BCC score mean and 
the CCR score mean and the equality of the 
IRS scores mean and the DRS scores mean. 

A)  Test of equality of mean of IRS scores and 
that of DRS scores. 

1st step:  Test the equality of the mean of BCC 
scores and CCR scores ・Case of DRSIRS θ>θ : 

H0: DRSIRS θ=θ      vs.     H1: DRSIRS θ>θ . H0: CCRBCC θ=θ     vs.     H1: CCRBCC θ>θ . 
The test statistics is: The test statistics is: 
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where DRSIRS θ−θ≡∆ , S stands for standard 
deviation and n is the number of production units.   

Reject the null hypothesis when the test statistics 
is larger than 1.645, the upper 5% critical value 
from standard normal distribution, then proceed 
next step.  If not rejected, accept the null 
hypothesis (constant returns to scale). 

Reject the null hypothesis when the test 
statistics is larger than 1.645, the upper 5% 
critical value from standard normal distribution.  
Then accept the alternative hypothesis (increasing 
returns to scale). 

2nd step:  Test the equality of the mean of IRS 
scores and DRS scores. It is same as (A). 

・Case that IRSDRS θ>θ :  



D) Test of equality of the BCC score mean and 
the CCR score mean and sign test of the 
probability that number of units, whose 
scores are improved in IRS than DRS, is 
more than half of all units. 

)05.0(EXPj～ϕ                   (12) 

)(µEXP represents the exponential distribution 
with mean µ .  The random variable of (9) and 
(10) is generated from half normal distribution.   
Both of means of (9) and (11) are same, 0.159.  
Also both of the means of (10) and (12) are same, 
0.05.  The distribution of (9) and (11) are same as  
Banker (1996) adopted. 

1st step: This step is same as first step of (C).  
When the null hypothesis is rejected, then proceed 
to next step. If not rejected, accept the null 
hypothesis (constant returns to scale). 

2nd step:  This step is same as (B). 3.3. Sample Size and Simulated 
Observation 

3. SETTING FOR MONTE CARLO 
SIMULATIONS As noted above, the value of inputs vector for 

each observation j are generated from a uniform 
distribution.  The corresponding value of the 
output for each observation j, Y , is obtained 
using the production function (8) and the 
simulated value of the inefficiency term θ .  We 

generate Y  as follows: 

j

j

j

We conduct Monte Carlo simulation to study the 
finite sample properties of the proposed tests.   

3.1. Production Technology 

Generally, the DEA can be applied to multiple 
inputs and multiple output production technology.  
But, for its simplicity, according to Banker (1996),  
we specify the following Cobb-Douglas 
production technologies; 

jjjjj XfQY θ=θ= /)(/              (13) 

We consider the case that the sample size is 100.  
Totally we consider 12 setups: 3 production 
technologies, 4 inefficiency distributions and 1 
sample size.  We replicate 500 drawings for each 
setup.  We use GAUSS 5.0 to generate random 
variables, solve linear programming for the DEA 
estimates, and construct test statistics. 

Homogenous production function: 
4.0

2
6.0

110 xxQ =                      (8a) 

Concave production function: 
3.0

2
4.0

110 xxQ =                     (8b) 

Convex production function: 4. RESULTS OF SIMULATIONS 
5.0

2
8.0

110 xxQ =                     (8c) In this paper, we compare the proposed tests 
above and the tests introduced by Banker (1996).  
Before the discussion of simulations results, we 
will explain the tests for returns to scale using 
DEA that are introduced by Banker (1996). 

where  and  are each drawn randomly and 
independently from uniform probability 
distribution over the interval [5, 15].  The first 
technology exhibits constant returns to scale for 
all input value.  The second production function is 
concave, exhibiting decreasing returns to scale for 
all inputs.  The third production function is 
convex, exhibiting increasing returns to scale for 
all inputs.  These settings are same as Banker 
(1996) adopted. 
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3.2. Inefficiency Distributions which follows the F distribution with (N,N) if the 
distribution of θ  and θ are same.  If not 
rejected, accept the constant returns to scale 
hypothesis. 

CCR
j

BCC
jThe distribution of the inefficiency θ for any 

observation j must be above 1, we write 
, ϕ .  We consider four different 

distributions as follows: 

j

jj ϕ+=θ 1 0≥j

F) Kolmogorov-Smlirnov Test 

・ { }NjFF BCC
j

CCR
j ,,1)()(max K=θ−θ  )20.0,0(Nj～ϕ                     (9) 

)063.0,0(Nj～ϕ                 (10) where F(.) is the empirical distribution function. 
If not rejected, accept the constant returns to scale 
hypothesis.)159.0(EXPj～ϕ                 (11) 



Table 1: Summary of statistical test results (sample size=100)
Panel A:True production technology is constant return to scale

Null Alt.
θIRS＞θDRS CRS IRS 0 ( 0 ) 0.028 ( 0 ) 0.518 ( 0.238 ) 1 ( 0.948 )

θDRS＞θIRS CRS DRS 0 ( 0 ) 0 ( 0 ) 0 ( 0 ) 0 ( 0 )

θIRS＞θDRS CRS IRS 0.014 ( 0.010 ) 0.232 ( 0.170 ) 0.59 ( 0.556 ) 0.894 ( 0.876 )

θDRS＞θIRS CRS DRS 0.598 ( 0.516 ) 0.232 ( 0.182 ) 0.068 ( 0.044 ) 0.008 ( 0.006 )

θBCC＝θCCR CRS IRS, DRS 0.120 ( 0.028 ) 0.166 ( 0.038 ) 0.834 ( 0.526 ) 1 ( 1 )

θIRS＞θDRS CRS IRS 0 ( 0 ) 0.028 ( 0 ) 0.520 ( 0.24 ) 1 ( 0.948 )

θDRS＞θIRS CRS DRS 0 ( 0 ) 0 ( 0 ) 0 ( 0 ) 0 ( 0 )

θBCC＝θCCR CRS IRS, DRS 0.120 ( 0.028 ) 0.166 ( 0.038 ) 0.834 ( 0.526 ) 1 ( 1 )

θIRS＞θDRS CRS IRS 0.004 ( 0.002 ) 0.052 ( 0.012 ) 0.524 ( 0.340 ) 0.894 ( 0.876 )

θDRS＞θIRS CRS DRS 0.060 ( 0.010 ) 0.024 ( 0.002 ) 0.048 ( 0.012 ) 0.008 ( 0.006 )

θBCC＝θCCR CRS IRS,DRS 0.054 ( 0.006 ) 0.100 ( 0.010 ) 0.286 ( 0.014 ) 0.936 ( 0.504 )

θIRS＝θDRS CRS IRS,DRS 0 ( 0 ) 0 ( 0 ) 0 ( 0 ) 0 ( 0 )

θBCC＝θCCR CRS IRS,DRS 1 ( 1 ) 1 ( 1 ) 1 ( 1 ) 1 ( 1 )

θIRS＝θDRS CRS IRS,DRS 1 ( 1 ) 1 ( 1 ) 1 ( 1 ) 1 ( 1 )

Panel B:True production technology is decreasing returns to scale

Null Alt.
θIRS＞θDRS CRS IRS 0 ( 0 ) 0 ( 0 ) 0 ( 0 ) 0.440 ( 0.204 )

θDRS＞θIRS CRS DRS 1 ( 1 ) 1 ( 1 ) 0.632 ( 0.420 ) 0 ( 0 )

θIRS＞θDRS CRS IRS 0 ( 0 ) 0 ( 0 ) 0 ( 0 ) 0.258 ( 0.208 )

θDRS＞θIRS CRS DRS 1 ( 1 ) 1 ( 1 ) 0.976 ( 0.960 ) 0.142 ( 0.082 )

θBCC＝θCCR CRS IRS, DRS 1 ( 1 ) 1 ( 1 ) 1 ( 1 ) 1 ( 0.998 )

θIRS＞θDRS CRS IRS 0 ( 0 ) 0 ( 0 ) 0 ( 0 ) 0.442 ( 0.206 )

θDRS＞θIRS CRS DRS 0.998 ( 0.998 ) 0.998 ( 0.998 ) 0.630 ( 0.420 ) 0 ( 0 )

θBCC＝θCCR CRS IRS, DRS 1 ( 1 ) 1 ( 1 ) 1 ( 1 ) 1 ( 0.998 )

θIRS＞θDRS CRS IRS 0 ( 0 ) 0 ( 0 ) 0 ( 0 ) 0.260 ( 0.208 )

θDRS＞θIRS CRS DRS 0.998 ( 0.998 ) 0.998 ( 0.998 ) 0.974 ( 0.958 ) 0.142 ( 0.082 )

θBCC＝θCCR CRS IRS,DRS 1 ( 1 ) 1 ( 1 ) 0.912 ( 0.504 ) 0.880 ( 0.270 )

θIRS＝θDRS CRS IRS,DRS 1 ( 1 ) 1 ( 1 ) 0.136 ( 0.004 ) 0 ( 0 )

θBCC＝θCCR CRS IRS,DRS 1 ( 1 ) 1 ( 1 ) 1 ( 1 ) 1 ( 1 )

θIRS＝θDRS CRS IRS,DRS 1 ( 1 ) 1 ( 1 ) 1 ( 1 ) 1 ( 1 )

Panel C:True production technology is increasing returns to scale

Null Alt.
θIRS＞θDRS CRS IRS 1 ( 1 ) 1 ( 1 ) 1 ( 1 ) 1 ( 1 )

θDRS＞θIRS CRS DRS 0 ( 0 ) 0 ( 0 ) 0 ( 0 ) 0 ( 0 )

θIRS＞θDRS CRS IRS 1 ( 1 ) 1 ( 1 ) 0.998 ( 0.998 ) 0.998 ( 0.994 )

θDRS＞θIRS CRS DRS 0 ( 0 ) 0 ( 0 ) 0 ( 0 ) 0 ( 0 )

θBCC＝θCCR CRS IRS, DRS 1 ( 1 ) 1 ( 1 ) 1 ( 1 ) 1 ( 1 )

θIRS＞θDRS CRS IRS 1 ( 1 ) 1 ( 1 ) 1 ( 1 ) 1 ( 1 )

θDRS＞θIRS CRS DRS 0 ( 0 ) 0 ( 0 ) 0 ( 0 ) 0 ( 0 )

θBCC＝θCCR CRS IRS, DRS 1 ( 1 ) 1 ( 1 ) 1 ( 1 ) 1 ( 1 )

θIRS＞θDRS CRS IRS 1 ( 1 ) 1 ( 1 ) 0.998 ( 0.998 ) 0.998 ( 0.994 )

θDRS＞θIRS CRS DRS 0 ( 0 ) 0 ( 0 ) 0 ( 0 ) 0 ( 0 )

θBCC＝θCCR CRS IRS,DRS 1 ( 1 ) 1 ( 1 ) 1 ( 1 ) 1 ( 1 )

θIRS＝θDRS CRS IRS,DRS 0 ( 0 ) 0 ( 0 ) 0 ( 0 ) 0 ( 0 )

θBCC＝θCCR CRS IRS,DRS 1 ( 1 ) 1 ( 1 ) 1 ( 1 ) 1 ( 1 )

θIRS＝θDRS CRS IRS,DRS 1 ( 1 ) 1 ( 1 ) 1 ( 1 ) 1 ( 1 )

The number reported in each cell is the parcentage (out of 500 itarations) for which the coresponding test statistics is 

rejected at the 5% significant level.  The correspond number in parentheses in each cell indicates the percentage

 for which the test statistic is rejected at  the 1% significant level.

Inefficiency distribution
Type of Tests Hypothesis Exponetial Half Normal

μ＝0.05 μ＝0.157 μ＝0.05 μ＝0.157
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Inefficiency distribution
Type of Tests Hypothesis Exponetial Half Normal
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Inefficiency distribution
Type of Tests Hypothesis Exponetial Half Normal
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Table 1 presents the results of six kinds of tests for 
returns to scale.  The percentage in each cell 
represents the percentage of that the null hypothesis 
is rejected.  From Panel 1, size of the test (E) 
introduced in Banker is 0% regardless of the 
inefficiency distribution.  On the other hand, size of 
test (F) is 100%.  Size of the proposed test (A), (C) 
and (D) are less than 6% in the case of exponential 
distributed inefficiency. 

 When the true production technology is decreasing 
or increasing returns to scale, the percentage of 
rejection represents the power of test.  As for the 
decreasing returns to scale, the power of test (F) is 
100% in all cases.  The power of test (E) is over 
85% regardless of distribution.  The power of test 
(B) and (D) are over 95% except the case of half 
normal distribution with larger mean.  As for the 
case of exponential distribution, the power of test 
(B) and (D) are over 99%.  Half normal distribution 
has larger variance than exponential distribution 
with same mean as half normal distribution.  
Therefore one of reasons why the power of test 
using half normal distributed inefficiency is lower 
may be occurrence of outliers. 

As for the case of increasing returns to scale 
technology, the power of all tests is over 99% 
regardless of distribution in contrast with 
decreasing returns to scale technology.  This result 
may be brought by that input value range is narrow.  
For increasing returns to scale technology, the 
difference between the efficiency of IRS and DRS 
is larger as input value is larger (See Figure1).  

5. CONCLUSIONS 

In this paper, we propose new tests for returns to 
scale with some different DEA models.  To 
investigate the size and powers of the test statistics, 
simulations are conducted under several conditions: 
Cobb-Douglas with exponential and half normal 
distributed error.  

From results of simulations, test (B), (C) and (E) 
have good property in the case of the exponential 
distributed inefficiency.  However, there is no 
reason that the inefficiency follows only 
exponential distribution.  One of reasons that the 
test statistics do not work well with the half normal 
distributed inefficiency can be effects of outlier for 
the mean.  We have to pay attention to use these 
tests in case of inefficiency distributed half normal. 
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