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Abstract: Density weighted average is a nonparametric quantity expressed by expectation of a function of 
random variables with density weight. It is associated with parametric components of some semiparametric 
models, and we are concerned with an estimator of this quantity. Asymptotic properties of semiparametric 
estimators have been studied in econometrics since the end of 1980’s and it is now widely recognized that 
they are −n consistent in many cases. Many of them involve nonparametric estimates of unknown density 
or regression function but they are biased estimators for the true functions. Because of this, we typically need 
to use some bias reduction technique in the nonparametric estimates for −n consistency of the 
semiparametric estimators. When we use a kernel estimator, a standard way is to take a higher order kernel 
function. For density estimation, the higher the kernel order is, the less becomes the bias without changing 
the order of variance in theory. However, it is also known that higher order kernels can inflate the variance 
which may cause the result that the mean squared error with very high order kernel becomes larger than that 
with low order kernel in small sample. This paper propose to select the bandwidth and kernel order by 
minimizing bootstrap mean squared error for a plug-in estimator of density weighted averages. We show 
standard bootstrap does not work at all for bias approximation as in density estimation, but smoothed 
bootstrap is useful in our problem if suitably transformed. 
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1. INTRODUCTION 

Nonparametric kernel density estimator involves 
two user-determined components, one is 
bandwidth and the other is kernel function. One 
principle of determining them is such that the 
mean squared error (MSE) or mean integrated 
squared error is minimized. When we take kernel 
function from the class of density functions, 
Epanechnikov kernel is known to be optimal in 
the sense it minimizes the MISE (see e.g. 
Silverman (1986)), and the resulting MISE is of 
exact orderO , where d is the dimension 
of random vector of interest and n is the sample 
size. If we do not restrict ourselves to the class of 
densities in choosing the kernel function, we can 
attain a better MISE result by using a higher order 
kernel function stated below. It decreases the 
order of bias without affecting variance order and 
thus we can make MISE smaller asymptotically. 
However it is also known higher order kernels 
tend to inflate the variance through its 
multiplicative constant. Then higher order kernels 
may increase MISE in total depending on the 
relative effect of bias reduction and variance 
inflation in small sample. Also the MISE depends 
on the true density, and thus it is hard to say if we 
should use a higher order kernel or not practically. 
Furthermore, as claimed in Scott [1992, p.140], 

“the search for optimal higher order kernel is not 
so fruitful…Choosing among higher order kernels 
is quite complex and it is difficult to draw 
guidelines”, so that higher order kernel may not 
be a common tool in density estimation. 
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In semiparametric framework however, there are 
some cases where we need to use higher order 
kernels. It is well known that we can estimate 
parametric components of semiparametric models 

n -consistently and asymptotically normally in 
many cases. In order for the n -consistency, we 
typically need to use higher order kernel because 

n times the bias inherited from the 
nonparametric (density) estimator must converge 
to zero. This paper considers this situation for the 
estimate of density-weighted averages associated 
with some semiparametric models, and proposes 
how to determine the bandwidth and kernel order. 
We take a standard approach that we do it such 
that they minimize the MSE of the estimator. 
MSE typically involves unknown functions so 
that we approximate it by bootstrap. It is known 
in kernel density estimation that standard 
bootstrap does not work to evaluate the bias, but 
smoothed bootstrap works for it as shown in 
Taylor [1989]. We observe a similar phenomenon 
in our problem, but, unlike density estimation, 
smoothed bootstrap bias itself does not well 



approximate the true bias. We show we need to 
make a linear transformation to it. We also show 
that the bootstrap MSE is a second order 
approximation to the true MSE. 
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where (.)θ is an unknown function. It is easily 
seen . Thus if we have consistent 
estimates of and , we obtain a consistent 
estimate of β. Natural estimators for and are 
respectively 
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The following section describes density weighted 
derivatives and illustrate some related 
semiparametric models and their estimators. 
Section 3 give MSE and bootstrap MSE of the 
estimator explained in Section 2. Section 4 states 
the main result, while Section 5 proposes how to 
calculate bootstrap moments. 
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and 2. DENSITY WEIGHTED AVERAGES 
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Another example is density weighted averaged  
derivatives for a semiparametric index model 

Density weighted average (abbreviated to DWA 
hereafter) considered in Powell and Stoker [1996] 
is a nonparametric quantity expressed as 
       )](),([ XfWXkE=δ  

εβτ += )( XGY  where X is a d×1 vector of random variables 
with unknown joint density f(x), W  is a vector 
of some other random variables, and k  
is a function. We are concerned with the case 
when

qd RR →:

δ is estimated by a statistic with the 
following U-statistic form given a random 
sample niWX ii ,...,1),,(Zi == . 

where G(.) is an unknown function and β is the 
parameter vector of interest. Putting 

, we have )()( XGXg τβ=

])('[2)]()('[ YXfcEXfXgcE −==β  

for some constant c. The second equality requires 
some conditions on f and g (see e.g. Powell, Stock 
and Stoker [1989]). The expectation on the right 
is estimated by 
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            (2) where U(x,y;h) is a symmetric function with 
respect to x and y, and h is a parameter decaying 
to zero as . The simplest example is 
averaged density  where k(x,w)=1. Given 
a random sample , let 

∞→n
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In this paper we are concerned with the following 
estimator forδ ,  
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which is shown to have a representation (1) with 
be leave-one-out kernel estimator of the density 
f(x), where K(.) is a symmetric kernel function 
which integrates to unity and h is the bandwidth. 
An estimator for  is )]([ XfE
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(2) has a slightly different form from (3) because 
we take derivatives of density. We note, however, 
(2) also has a U-statistic form and can be handled 
similarly. (3) has a standard U-statistic form, 
though the kernel (in U-statistic sense) depends 
on n through h. The variance of the kernel is 
indeed infinite asymptotically and thus standard 
asymptotic theory for U-statistics does not apply. 
Nevertheless we can show is consistent for δ̂
δ and ),0()ˆ( VNn d→−δδ for some positive 
definite matrix V under some regularity 
conditions. Heuristically, these results are 
explained as follows. Writing 
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Alsoδ is associated with parametric components 
of some semiparametric models. For example, 
density weighted conditional covariances 

)]())|())(|([( 222111 XfXYEYXXEXEy −−=α
and 

,)]())|())(|([( 221121111 XfXXEXXXEXE τα −−=
τ denoting transpose, are useful to estimate the 
parametric component of partly linear regression 
model: 
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where 

we evaluate the variance and bias separately. 

SinceU 2112 U= and K(.) is symmetric, we have 
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we can show that all of (I), (II), (III) converge to 
zero in probability, while 
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higher order kernel and restrict the order of 
bandwidth. When K(.) satisfies 
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using (5). Therefore the bias is 
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As is standard in U-statistic theory, we have 

for positive integers ,i  it is called a higher 
order kernel and L is the kernel order. Supposing 
we use this kernel function in , the bandwidth 
must satisfy 
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 we have 

for −n consistency. The first and second terms 
correspond to the variance of )(IIn × and 

)(IIIn ×  respectively.  A necessary condition 
for the existence of h satisfying (6) is L>d/2. 
Therefore if , we need to use a higher order 
kernel.  
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3. MSE AND BOOTSTRAP MSE FOR 
DWA 

We obtain the leading terms of MSE of DWA in 
Section 3.1 and those for its bootstrap version in 
Section 3.2. We show that standard bootstrap 
does not work for bias estimation, but smoothed 
bootstrap approximates the bias after certain 
modification.  Var ,  )(2)}({)()( 1

2
1

2
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the second and third terms on the right are derived 
above. Taking iterated expectations, the first term 
equals to 

3.1. MSE 

In order to simplify expressions, we describe the 
case of d=1, q=1 and k . For d , 
we obtain qualitatively the same results.  Note    
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It is an optimal way to determine h and L such 
that leading terms of (9) is minimized. We need to 
check out theoretically if they exist, however, it is 
not a simple question, and without restricting the 
class of kernel function as in e.g. Hall and Marron 
[1987] in the context of density estimation, it 
seems virtually impossible. So we do not treat this 
problem in this work. 

We implemented a small Monte Carlo study for 
the case of averaged density and found a result 
that MSE is smooth in h for fixed L, but not 
necessarily smooth in L for fixed h. 

3.2. Bootstrap MSE 

Section 3.1 shows leading terms of MSE of . We 
would like to select h and kernel order L such that 
it is minimized. However, it is infeasible because 
the MSE involves unknown density f. We employ 
a bootstrap method to approximate the MSE.  

δ̂

Given a random sample  from a 
distribution H(x), suppose we would like to make 
a statistical inference on a quantity

nXX ,...,1

)(Hθ . A 
consistent estimator for this quantity is  
where

)ˆ(Hθ
Ĥ is the empirical distribution function. 

Random sample from Ĥ  given is called 
a (standard) bootstrap sample. Let be a 

bootstrap sample and 

n
*,..., nX

XX ,...,1
*
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*Ĥ be its empirical 
distribution function conditional on the original 
sample. Under some conditions, the distribution 
of  is close to that of θ , 
then we can make a statistical inference on 

using .  This method is 
called standard bootstrap. When we know H has a 
smooth density, we may replace

)(ˆ( HH θθ

))ˆ( HH

) −

(θ−
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smoothed bootstrap.  
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Our interest is to obtain a feasible estimator of the 
MSE for DWA by bootstrapping. It is known, in 
density estimation, standard bootstrap fails to 
approximate the bias, but smoothed bootstrap 
well approximates the bias (see Taylor [1989]). 
We observe a similar but slightly different 
phenomenon in the case of DWA. For smoothed 
bootstrap, we use a kernel density estimate. 

Let be a standard bootstrap sample, 
and be a smoothed bootstrap sample 

from where 
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Letting , we investigate 

smoothed bootstrap expectation and 
variance . We also calculate 
standard bootstrap expectation for comparison. 
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Comparing this expression with (7), we 
immediately find the similarity, however, if we 
take the standard bootstrap expectation, we obtain 
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so that  obviously does not work for 
estimating the bias. Straightforward calculation 
gives, using (5), 
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The left hand side is not exactly the bootstrap 
MSE of , in the sense that we subtract  
from the bias and multiply it by 1/2 which adjusts 
the bias of the bootstrap bias estimate of . But 
(15) claims it gives a sensible approximate to the 
MSE .  
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Also we have 
Also we would like to remark that there is a 
possibility depending on f(x) and k(x) that 
standard bootstrap variance approximates the true 
variance better than the smoothed bootstrap. 
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(12) shows that a linear transformation of the 
bootstrap bias well approximates the bias of . 
γ is an unknown quantity due to unknown f(x), 
but we have  

4. BANDWIDTH AND KERNEL ORDER 
SELECTION 

Previous section shows that the bootstrap MSE 
approximates the true MSE in probability up to 
second order. This asymptotically justify the 
method of selecting bandwidth and kernel order 
such that they minimize the bootstrap MSE, or 
more precisely, 
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There are two open questions practically. One is 
that how to generate smoothed bootstrap samples 
from a nonparametric kernel density with higher 
order kernel. If we use a density for the kernel, we 
easily obtain a smoothed bootstrap sample by 
drawing a random sample from the kernel 
multiplying it by h and adding it to the ordinary 
bootstrap sample, namely 

where 
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Tedious but straightforward calculation gives where ,...2,1, =iiε is a random sample from 

density K(.) (see e.g. Davison and Hinkley [1997], 
p.p.79). It is a common way of generating a 
smoothed bootstrap sample, but higher order 
kernel functions does not satisfy K(.)>0 and thus 
we cannot generate a random sample from K(.). In 
our case however, we do not need to generate a 
smoothed bootstrap sample because what we need 
is not the sample itself, but its conditional 
expectation. We explain it in the next section. 
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Thus combining (12), (13) and (14), we have the 
following proposition. 

The second problem is how to determine the class 
of kernel function. There are some ways of 
constructing higher order kernels from a density. 
See for example, Robinson [1988], Hall and 
Marron [1989], Jones and Foster [1993] and 
Wand and Jones [1995]. Practitioners will take 

PROPOSITION 

Under some regularity conditions on smoothness, 
boundedness and integrability of k, f and their 
derivatives, we have 



where U and V are independent standard normal 
variates. Thus given a random sample 

for some sufficiently large 
integer m, we can approximate (18) by its sample 
analogue 
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one of these methods, but there still remains a 
problem of choosing the base density. As often 
claimed in density estimation problem, kernel 
shape itself may not be a too critical matter. It can 
be true here. We leave this topic for future 
research. 
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5. SMOOTHED BOOTSTRAP MOMENTS 
WITH HIGHER ORDER KERNELS 

therefore, a natural approximate to (17) is 
As stated in the above, when we use a higher 
order kernel density estimate, we have a technical 
problem in generating a smoothed bootstrap 
sample. However, in our problem we need not 
generate a smoothed bootstrap sample because 
what we need is not the sample itself, but the 
conditional first and second order moments 

and . In the case of 
averaged density for instance, the former is 
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We note that without m factors, this is quite 
similar to smoothed bootstrap expectation with a 
second order kernel conditional on the additive 
smoother ε in (16). The difference is how X is 
contaminated. 
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Formula for the second order moment is omitted, 
but it is also similarly obtained. We simply need 
to work out the integral. However, for relatively 
higher order kernels, it could be quite hard to 
calculate the double integral in (17). There is a 
way to avoid it for certain higher order kernels, as 
proposed in Nishiyama and Robinson [2003] in 
the context of averaged derivative estimation. For 
example, if we use e.g. a higher order kernel as in 
Robinson [1989], L-th order kernel function is 
represented by 
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where g(u) is a density and m is a (L-2)-th 
polynomial whose coefficients depend on the 
moments of g(u). For example, in the case when 
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Scott, D.W., Multivariate Density Estimation, 
John Wiley, 1992. Then in the case of 4-th order kernel, for a given x, 
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