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Abstract

This paper investigates the maximum likelihood estimator (MLE) of structure -changed ARMA-
GARCH models. The convergent rates of the estimated change-point and other estimated pa-
rameters are obtained. After suitably normalized, it is shown that the estimated change-point
has the same asymptotic distribution as that in Picard(1985) and Yao (1987). Other estimated
parameters are shown to be asymptotically normal. As special cases, we obtain the asymptotic
distributions of MLEs for structure-changed GARCH models, structure-changed ARMA models
with structure-unchanged GARCH errors, and structure-changed ARMA models with i.i.d. errors,

respectively.
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1 Introduction

Consider the following autoregressive moving-
average (ARMA) model with the generalized au-
toregressive conditional heteroscedasticity (GA
RCH) errors:

P q
(L1) = Z‘bz’yt—i + Z¢i€t—i + &,
i=1 i=1
(12) Et =M/ ht,
™ S
(1.3) hy = ap + Z e+ Zﬂiht—ia
i=1 i=1

where p, ¢, r and s are known positive integers
and 7; are independent and identically distrib-
uted (i.i.d.). Equations (1.1)-(1.3) is called the
ARMA-GARCH model and denoted by M()),
where A = (m/,d")" with m = (¢1,-- -, dp, Y1,
- 1hy) and & = (ag, 1y, apy Bry -, Bs)'. De-
note Y = (y;,---, ). Y} € M()\) means
that y;,---,yr are generated by model (1.1)-
(1.3) with the true parameter A = X\g. We say
that Y7 follows a structure-changed ARMA-GA
RCH model if there exist kg € [1,n—1], Ap € O
and Ag; € © with A 7& Ap1 so that

(14) Y € M(X\o) and Y"1 € M(Ao1).

This structure-changed ARMA- GARCH
model is denoted by M (kg, Ao, Ao1). ko is called
the change-point of this structure-changed model.
}/1” S M(k‘o, Ao, /\01) means that (14) holds.
The focus of this paper is to investigate the
maximum likelihood estimator (MLE) of model
M(k‘o, Ao, /\01).

Structural change has been recognized to be
an important issue in econometrics, engineering,
and statistics for a long time. The literature in
this area is extensive. The earliest references
can go back to Quandt (1960) and Chow (1960).
Many approaches have been developed to detect
whether or not structural change exists in a sta-
tistical model. Examples are the weighted like-
lihood ratio test in Picard (1985), and Andrew
and Ploberger (1994), Wald and Lagrange mul-
tiplier tests in Hansen (1993), Andrews (1993),
and Bai and Perron (1998), the exact likelihood
ratio test in Davis, Huang and Yao (1993), the
empirical methods in Bai (1996), and the se-
quential test in Lai (1995). A general theory for
exact testing change-points in time series mod-
els was established by Ling (2002a). Empiri-
cally, we want to know not only that structural
change exists, but also the location of change-
point.
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Hinkley (1970) and Hinkley and Hinkley (19
70) investigated the MLE of change-points in
a sequence of i.i.d. Gaussian random variables
and the binomial model, respectively. Their cha-
nged parameters are fixed and the limiting dis-
tributions of the estimated change-points seem
not to be useful in practice. Picard (1985) al-
lowed the difference between parameters before
and after the change-point in AR models to tend
to zero but not too fast when the sample size
tends to infinity, and obtained a nice limiting
distribution for the estimated change-point. This
distribution can be used to construct the confi-
dence intervals of the change-point, and hence
it is very useful in applications, as these confi-
dence intervals indicate the degree of estimation
accuracy. Yao (1987) used a similar idea for in-
dependent data and obtained the same limiting
distribution as Picard’s. Picard’s method has
been developed for the regression models by Bai
(1994, 1995, 1997). In particular, Bai, Lums-
daine and Stock (1998) used Picard’s method for
the structure-changed multivariate AR model
and cointegrating time series model, and de-
rived the asymptotic distributions of the change-
points in these models. Chong (2001) devel-
oped a comprehensive theorem for the structure-
changed AR(1) model. A general theory for esti-
mating change-points in time series models with
a fixed drift was established by Ling (2002b).

In this paper, we use Picard’s method to
model M (kg, Ao, Ao1). The convergent rates of
the estimated change-point and other estimated
parameters are obtained. After suitably normal-
ized, it is shown that the estimated change-point
has the same asymptotic distribution as that in
Picard(1985) and Yao (1987). Other estimated
parameters are shown to be asymptotically nor-
mal. As special cases of model M (kg, Ao, Ao1),
this paper obtains the asymptotic distributions
of MLEs for structure-changed GARCH models,
structure-changed ARMA models with structure-
unchanged GARCH errors, and structure- cha
nged ARMA models with i.i.d. errors, respec-
tively.

2 Main Results

As common practice, we parameterize the change
-point as kg = [n7p], where 79 € (0,1) and [z]
represents the integer part of x. We assume
that A\g1 = g, is changed over n with d, =
Aon — Ao — 0 as n — o0o. It is reasonable to al-
low the changed parameters to have such a small

shift. Some arguments on this can be found
in Picard (1985) and Bai et al. (1998). Let
Y € M([n7o], Ao, Aon) and the corresponding
unknown parameter model be M ([n71], A, A1), wh
-ere (T,\,A1) € (0,1) x ©2 and © be a com-
pact subset of R! with I = p+q+7r+ s+ 1.
Suppose that (79, Ag, Ao ) is an interior point in
(0,1) x ©2 and, for each X € ©, it follows that
Assumption 1. All the roots of ¢p(z) =1 —
12— — Gy and (z) = £ hyz+-- -+ 2
are outside the unit circle and have no common

root, ¢p # 0 and g # 0;

Assumption 2. 0 < oy < ap < g, a; > 0,
i=1--r—10a #0, 8 >88>0,j=
Liovoys, Yo +350 B <Lland 37 o2
and 1 — "7 | B;z" have no common root. |

Assumption 3. Ey} < oo.

The necessary and sufficient condition for
Ey} < oo, see Ling (1999) and Ling and McAleer
(2002b). Conditional on Yy = (yo,y—1,- ), the
log-likelihood function (ignoring a constant) can
be written as

[nT] n
La(r A M) = [ 6+ > )]
t=1 t=[n7]+1

n

> uon),

[nTo]
—{ Z le(Xo) +
t=1 t=[n1o]+1

where I;(\) = —e2()\)/2ht(N\) — 27 log hy (),
and €;(A\) and hy(\) are defined as ¢; and hy,
respectively, but now they are the functions of
Y™, Yy and A. Since we do not assume that
¢ is normal, (2.1) is called the quasi-likelihood
function, and its maximizer on the parameter
space (0,1) x ©2, denoted by (7, An, A1p), is
called the quasi-maximum likelihood estimator
(QMLE) of (70, Ao, Aon). In practice, the initial
value Y} is not available and can be replaced by
any constant. This does not affect the asymp-
totic behavior of the QMLE, see Ling and Li
(1997).

When y; € M(A), y; is a fixed function of
A and {n:,m:-1, -}, and hence when Y;® €
M(Aon), it strictly constitutes a triangular ar-
ray of the type {ywn, :t=1,2,---;n=1,2,---}.
In order not to overburden notation, we simply
refer to the time series generated by M (\gy,) as
y¢. Our first result gives the rates of convergence
of the QMLE and it plays an important role in
the proof of Theorem 2.2.

Theorem 2.1. Suppose that Y{* € M ([nTg],
o5 Aon), Elng|*Tt < oo for some v >0, and As-
sumptions 1-3 hold. If d,, — 0 and \/n||d,||/logn

(2.1)



— 00, then
Tn = To= Op<ndidn>’
A — Xo zop(%),

“ 1
A — Ao = op(%).

Now, we state our second main result which
shows the limiting distribution of the QMLE. In

the following, F' is the distribution with density
fon R:

fla) = iaw@@m i

2
2
/ exp —%)du.

This distribution was first found by Picard (1985)
and Yao (1987). The latter also tabulated its
numerical approximation.

Theorem 2.2. If the conditions in Theo-
rem 2.1 are satisfied, then 7,,, A, and Ay, are
asymptotically independent, and

Coin(d,Qd,) (7 — 10) — ¢ F,
< 1
Vi, — Xo) — 2 N(0, —Q 712071,
70

. Q-txo-t

\/ﬁ(kln - >\On) —c N(07 )7

1—7’0

where Cy, = (d,Sdy, ) (d!, Q) "L, Q = E[0%1, (Ao

JONON], and 3 = E[(8l,(Ao)/ON) (9ly(Xo) /axg].

As mentioned in Section 1, model (1.1)-(1.3)
implies some important spec1al cases. We first
consider the GARCH model:

(22) Et =Mt \/h_t,
(23) h: = ag + Z OéiE%_i + Zﬂzht_l
=1 =1

Denote model (2.2)-(2.3) by M(6) and let &F =
(€4, -+ +,€x)". We say that €7 follows a structure-
changed GARCH model if there exists kg € [1,
n — 1] so that &% € M (dy) and €8 41 € M(don)
with dg # . This structure-changed model is
denoted by M (ko, 80, 0on). Let (Fn,0n,01n) be
the QMLE of (7o, do,d0n). From Theorem 2.2,
we immediately obtain the following result.
Corollary 2.1. Suppose that £} € M ([n1o],
80, 60n), Elm|*T < oo for some v > 0, and As-
sumption 2 holds. If d,, = dpn, — 9o — 0 and
Vnlld,||/logn — oo, then %, 6, and b1, are

asymptotically independent, and
71(d;Lan)(7ﬁn —10) —rc F)
V8, = 8o) —2 N(0,—R™1),
47’0

V(81n — don) —2 N(0, —

ot )

Next, we consider the structure-changed AR
-MA model with structure-unchanged GARCH
errors. We say that Y7* follows such a model
if there exists kg € [1,n — 1] so that Y &
M()\O) = M(mo,&)) and Yk%Jrl € M()\on) =
M (mon, o) with mg # mg,. This structure-
changed model is denoted by M (kq, mq, Moy, do)-
Let (7, fitn, Min, 0n) be the QMLE of (7o, mo,
Mon, 0g). From Theorem 2.2, we obtain the fol-
lowing corollary.

Corollary 2.2. Suppose that Y{* € M ([nT],
Mo, Mon, 00), Assumptions 1-3 hold, n, has a
symmetric density and E|n|*T* < oo for some
v > 0. Ifd,, = mo,—mo — 0 and \/n||d, ||/ logn
— 00, then T, My, M1, and Sn are asymptoti-
cally independent, and

Coln(d, Qpdy) (7 — T0) — ¢ F,
Q18,01

1 —T0 )’
1

N0, —Q. 1%, 0.1,
70

\/ﬁ(mln — mon) — L N(O,

V(i —mg) —¢
Vi3, —bo) —2 N(O, TR,

where Cy, = (d, S dp)(d),Qpdy,) 1
2Q, and %, = P + Q.
Finally, we consider the ARMA model:

Z@% it szgt i+ €t,

where st are i.i.d. with mean zero and vari-
ance 02. We denote model (2.4) by M(m). We
say that Y7 follows a structure-changed ARMA
model With i.i.d. errors if there exists ky €
[1,n — 1] so that Y} € M(mg) and Y €
M (moy,) with mg # moy,. This structure-changed
model is denoted by M (ko,mo,moy). In this
case, maximizing the log-likelihood function (2.1)
is equivalent to minimizing:

0, =P+

(24)y: =

[nT] n
Ly, (1,m,mq) Zat Z e2(my)
t=[n7]+1
[n7o] n

(2.5)

Z 5§(m0n>~

t=[n7o]+1

— > et(mo) —



Usually, we call the minimizer of L. (7, m, m;)
the conditional least squares estimator (CLSE),
denoted by (7Ln, MLn,ML1s). From Theorem
2.2, we obtain the following result.

Corollary 2.3. Suppose that Y{* € M ([no],
mo, Mon), Assumption 1 holds and Ele|*T* <
oo for some v > 0. If d, = mg, — mo — 0 and
Vn|ldn|l/ logn — oo, then T1n, Thi, and Mmrin,
are asymptotically independent, and

n(d,Vdy)o 2(*pn —T0) —¢ F,
2
Vg, —mo) — 2 N(0, ‘i—v—l),
0

Vn(mrin — mon) —r2z N(O

2

vh,

’1*7'0

where V = E[(8e¢(Ag)/0m)(9et(Xo)/Om)].

Remark 2.1. When Y* € M([n7], mo,
Mon, o), the objective function (2.5) can be used
to estimate (79, mg, Mo, ). Using a similar ap-
proach as for Theorems 2.1-2.2, we can show
that

(26)  Cpin(d,Vd,)(fLn — T0) —¢ F,

where Cpr,, = (d/,Vd,)(d,Vd,) " and V = E|(
0e¢(Xo)/Om) (Dt (No)/Om’)e?]. Tt is interesting
to compare the two estimators 7, in Corollary
2.2 and 7, in (2.6). The optimality of esti-
mated change-points has not been established
in the literature. We define efficiency as follows:

Assume that 71, and T2, are two es-
timators of o such that D1y, (T1n —
7'0) — L F and Dgn(f'gn — T()) —L
F. We say that 71,, is more efficient
than 7oy if D1y > Day for all n.

The reason for this definition is that 71,, can al-
ways provide sharper confidence intervals than
Ton, at any significant level. Under this defin-
ition, it is easy to see that the QMLE 7, in
Corollary 2.2 is more efficient than the CLSE
TLn in (2.6) if 7 is normal since (d;,Vd,)? <
(dl,Pdy)(d;,Vd,) by Chebyshev’s inequality. We
can show that, even when 7, is not normal, the
QMLE is also more efficient than its CLSE.

3 Simulation Studies

We first examine the performance of our asymp-
totic results in the finite samples via some Monte
Carlo experiments. The following three models
are used:

Model 1 : Yt = GoYi—1

Tii<igy + PonYt—1Lt> ko) + €t
€t ="M \/h_ta
he = (o + cogi_y + Bohe—1)
Trp<ioy + (Q0on + Qone?_ |
+Bonhi—1) I {t>ko}

Model 2 : €t = nt\/h_t and
he = (o + cogi_y + Bohe—1)
Tie<ioy + (Qoon + Qonel
+Bonhi—1) I {t>ko}
Model 3 : Yt = OoYi—1

Tii<noy + Gon¥s—11{i> ko) + €t

&t = nt\/h_t,

hs = ago + ape?_y + Bohs_1,

where 7; ~ 1.1.d.N(0,1). The true observations
are generated through these models with para-
meters: ¢g = 0.5, ago = 1.0, a9 = 0.2, Gy =
0.7, ¢on, = —0.6, agon = 0.5, ag, = 0.57 and
Bor, = 0.02. We use 4000 replications in all the
experiments. These experiments are carried out
by Fortran 77 and the optimization algorithm
from Fortran subroutine DBCOAH in the IMSL
library is used.

In Tables 1 and 2, we summarize the empir-
ical means and standard deviations (SD) of the
MLEs of Ao and Aons An = ($n,Gon, Gins Bn)’
and \;, = (qgln, dom,éxln,ﬁln)’. From the two
tables, we see that the SDs of j\n and j\m are
decreased and increased, respectively, as 7y is
increased from 0.496 to 0.504. This is consis-
tent with our theoretical results in Section 2.
As the sample size n is increased from 250 to
400, both the corresponding biases and SDs be-
come smaller. This is the same as the usual
results in the structure-unchanged AR-GARCH
models. For Models 2 and 3, the Monte Carlo
results are similar and hence are not reported
here.

We use two methods to estimate Model 3,
that is, the MLE and the CLSE as in Corol-
lary 2.3 and Remark 2.4. Model 3 is denoted
by Model 3a and Model 3b as it is estimated by
the MLE and the CLSE, respectively. In Table
3, we report the 90% range, estimated asymp-
totic confidence interval (EACI), and asymp-
totic confidence interval (ACI) of the change -
point kg = [n1o] with 79 = 0.500 and the sample
sizes n = 250,400. The empirical mean is the
average of k, from the 4000 replications. The
90% range are respectively the 50%-quantile and
the range between the 5% and 95% quantiles of



the distribution of k,. The EACI and ACI are
computed, respectively, by the following formu-
las:

|:]A€n - [AFw/Q] - 1a]%n - [AFw/Q] + 1i|
(ko — [AFL 2] =1, ko — [AFL 2] + 1]

where F,, /, is the wth quantile of the distribu-
tion F and A = (d,Qd,,) 7Y, (d,Qdn) "1, (d),Qm
dn)~! and (d,Vd,)(d,Vd,)~? for Model 1, Mo
-del 2, Model 3a and Model 3b, respectively.
Using the density function f(z) in Section 2,
we obtain Fyo5 = 7.792. Q is estimated by
=t 1(A,) /0NN, @,V and V are sim-
ilarly estimated. Under Assumptions 1-3, these
estimators are consistent in probability (see Ling
and Li, 1997). From Tables 3, we see that the
AClI is exactly the same as EACI. The 90% range
is slightly wider than EACI and ACI in all cases.
As n is increased from 250 to 400, the EACIs
and ACIs of l%n — ko have not been improved.
This is because the rate of convergence of l%n —ko
is Op(1/d,,d,), which only depends on d,d,,
while d,, is fixed for n = 250 and 400 in our
experiments. This finding is similar to those in
Bai (1995) for the structure-changed regression
model and in Bai et al.(1998) for the structure-
changed multivariate AR models and cointegrat-
ing time series models. Comparing Model 1
with Model 3a, we can see that both the 90%
range and the ACI for Model 1 are, respectively,
tighter than those for Model 3a. This means
that we can estimate ky more precisely when
changed coefficients also exist in the GARCH
part. Comparing Model 3a with Model 3b, we
find that both the 90% range and the ACI for
Model 3a are, respectively, tighter than those for
Model 3b. This is consistent with our discussion
in Remark 2.1.
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TABLE 1

Empirical Mean and Standard Deviation
of MLE of Ao and Ao,
n = 250 and 4000 Replications

20=(0.5, 1.0, 0.2, 0.7)
70 ¢n &On 6477. 677.
496  Mean | 4954 .9566 .1707 7251
SD | .0847 .1748 .1105 .0985
.500 Mean | .4952 .9580 .1706 7251
SD | .0845 .1692 .1104 .0980
.504 Mean | .4952 .9579 1712 .7246
SD | .0841 .1686 .1098 .0975
TABLE 2

Empirical Mean and Standard Deviation
of MLE of )\0 and )\On
n = 400 and 4000 Replications

Aon=(—0.6, 0.5, 0.57, 0.02)

T0 ¢1n dOln Gin 6171
496  Mean | —.5968 .4851 .5408 .0495
SD .0556 .0994 .1524 .0741

500  Mean | —.5931 4943 .5288 .0399
SD .0562 .0996 .1534 .0755

.504 Mean | —.5932 4944 5288 .0399
SD .0566 .0999 .1543 .0762

TABLE 3

MLE and Confidence Interval
of the Change-point ko
4000 Replications

n=250
70 = 0.500 90% Range EACI ACI
Model 1 [120, 129]  [122, 128] [122, 123]
Model 2 [115,131]  [120,130] [120, 130]
Model 3a (116, 135]  [119,131] [119, 131]
Model 3b (115, 136]  [114,136] [114, 136]
n=400
70 = 0.500 90% Range EACI ACI
Model 1 [195, 204]  [197, 203] [197, 203]
Model 2 [191,207]  [195,205] [195, 205]
Model 3a [191, 210]  [194, 206] [194, 206]
Model 3b (190, 211]  [189, 211] [189, 211]




