
Some Monte Carlo Evidence on the Hypothesis
Testing  for the Mean of the Stationary Vector

Autoregressive Process
Hiroshi Yamada

Department of Economics, Hiroshima University, Higashi-Hiroshima, Japan

Abstract: This paper deals with the hypothesis testing for the mean of the stationary vector autoregressive
(VAR) process. We consider the situation in which a researcher’s interest lies, not in detecting the lag order
of the VAR model and/or in estimating coefficient matrices of the model, but in testing the hypothesis on
the mean of the stationary VAR process. We investigate the finite sample performance of alternative testing
procedures that are applicable in such situations. Two of these procedures are conventional methods, such
as the Wald test statistic. This approach requires the determination of the lag order of the VAR model
and estimation of coefficient matrices of the model, which are nuisance parameters for the researcher.
The other one is the method which is recently developed by Kiefer, Vogelsang and Bunzel (2000). The
comparative advantage of the approach is that it does not require such unnecessary inferences. On the
other hand, the approach uses artificial accumulation of incorrectly specified OLS residuals, which could
be costly in finite samples. Our aim is to provide some useful information for the researcher to select one
of these procedures through Monte Carlo simulation experiments.
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1. INTRODUCTION

In this paper, we deal with the hypothesis testing
for the mean of then-variate vector time seriesyt =

(y1t, . . . , ynt)′ which is generated by the following
model:

yt = µ + ut, E(ut) = 0, t = 1, . . . , T. (1)

Then, the hypothesis for the mean of the vector
time series,yt, can be represented as:H0 : Rµ = r
andH1 : Rµ � r, whereR is anm × n full-row-
rank-matrix andr is anm-dimensional column vec-
tor. For an economic example ofyt, R, and r,
suppose thatyt is constructed by two stock index
returns from two different stock markets, then the
hypothesis whether or not the means of these stock
returns are equal can be expressed byR = (1,−1)
andr = 0.

In this paper we suppose thatut in (1) is gener-
ated by the following vector autoregressive (VAR)
model:

Ψ(L)ut = εt, (2)

whereΨ(L) = In −Ψ1L − · · · −ΨpLp and all roots
of |Ψ(z)| = 0 are outside the unit circle andL de-
notes the lag operator. We further suppose thatεt
is an independently and identically distributed (iid)
sequence with mean0, finite fourth moments, and
E(εtε′t ) = Σ, whereΣ is a positive definite matrix.

Under the assumptions above, the vector time se-
ries, yt, is a stationary vector autoregressive pro-

cess of orderp with meanµ. The hypothesis test-
ing can be performed with conventional test statis-
tics such as the Wald test statistic, which uses or-
dinary least squares (OLS) estimators for the co-
efficient matrices of the followingp-th order VAR
model:

yt = µ
∗ +Ψ1yt−1 + · · · +Ψpyt−p + εt, (3)

where,µ∗ = (In−Ψ1−· · ·−Ψp)−1µ. However, this
method requires the determination of the lag order
of the VAR model as well as OLS estimators of the
coefficient matrices of the VAR model (3), which
are nuisance parameters for the researcher because
his or her interest lies in testing the hypothesis for
the mean ofyt. These requirements could be con-
sidered as drawbacks of the procedure.

Recently, Kiefer, Vogelsang and Bunzel (2000)
proposed a new approach, which is attractive be-
cause it does not require the determination of the
lag length and/or the estimation of the nuisance
coefficient matrices. However, this method uses a
partial sum process of OLS residuals from a mis-
specified model, which could be costly in finite
samples. In this paper, we attempt to provide in-
formation as to which procedure is more appropri-
ate for the researcher, through the use of Monte
Carlo simulation experiments. This paper is orga-
nized as follows. In Section 2, we introduce two
conventional methods and the procedure of Kiefer,
Vogelsang and Bunzel (2000). In Section 3, we
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show some simulation results. Our conclusion is
provided in Section 4.

2. ALTERNATIVE PROCEDURES

2.1. Conventional Procedures

We defineµ̂ = (In − Ψ̂1 − · · · − Ψ̂p)−1µ̂∗, where
(µ̂∗, Ψ̂1, · · · , Ψ̂p) is the matrix of OLS estimators
for (µ∗,Ψ1, · · · ,Ψp). From Lütokepohl (1993, p.77),
T ∗(µ̂ − µ) ⇒ N(0,Ω), where “⇒” denotes weak
convergence,T ∗ = (T − p), andΩ = (In − Ψ1 −
· · · − Ψp)−1Σ(In − Ψ1 − · · · − Ψp)−1′. Then, under
H0, T ∗1/2(Rµ̂ − r) ⇒ N(0, RΩR′), and hence the
asymptotic null distribution of the followingW1

test statistic isχ2 distribution with m degrees of
freedom:

W1 = T ∗(Rµ̂ − r)′(RΩ̂R′)−1(Rµ̂ − r), (4)

whereΩ̂ = (In − Ψ̂1− · · · − Ψ̂p)−1Σ̂(In − Ψ̂1− · · · −
Ψ̂p)−1′. Here, Σ̂ = T ∗−1∑T

t=(p+1)ε̂t ε̂
′
t with ε̂t being

the OLS residuals from (3) fort = (p + 1), . . . ,T .
In addition, from L̈utokepohl (1993, p.77), we

seeT 1/2(µ̃ − µ) ⇒ N(0,Ω), whereµ̃ = T−1∑T
t=1yt.

Hence, the asymptotic null distribution of the fol-
lowing W2 test statistic is alsoχ2 distribution with
m degrees of freedom:

W2 = T (Rµ̃ − r)′(RΩ̂R′)−1(Rµ̃ − r). (5)

2.2. An Alternative Procedure

In this subsection, we introduce the approach de-
veloped by Kiefer, Vogelsang and Bunzel (2000).
(Although the multivariate regression model is not
discussed in their paper, the extension is straight-
forward.) We definẽut = yt − µ̃, and ũt can be
expressed asut − (µ̃ − µ). Then, from the func-
tional central limit theorem (FCLT) and the con-
tinuous mapping theorem, we seeT−1/2∑[T s]

t=1 ũt ⇒
ΛVn(s), whereVn(s) = Wn(s) − sWn(1) andΛ is
a matrix such thatΩ = ΛΛ′. Here,Wn(s) denotes
an n-dimensional standard Brownian motion and
[T s] denotes the largest integer that is less than
or equal toT s where s ∈ [0,1]. Consequently,
with the definition ofS̃t =

∑t
j=1ũ j, we see that

Ω̃ = T−2∑T
t=1S̃tS̃′t ⇒ Λ(

∫ 1

0
Vn(s)Vn(s)′ds)Λ′. In

addition, underH0, T 1/2(Rµ̃ − r) ⇒ RΛWn(1).
Thereby, underH0:

Q = T (Rµ̃ − r)′(RΩ̃R′)−1(Rµ̃ − r)

⇒Wm(1)′(
∫ 1

0
Vm(s)Vm(s)′ds)−1Wm(1). (6)

It is noteworthy that the asymptotic null distribu-
tion of the test statistic depends only on the num-
ber of restrictions,m, and that the distribution is

nuisance-parameter free, although it is nonstandard.
Because Kiefer, Vogelsang and Bunzel (2000) sim-
ulated and provided asymptotic critical values for

Wm(1)′(
∫ 1

0
Vm(s)Vm(s)′ds)−1Wm(1)/m, we use the

F∗(≡ Q/m) test statistic instead of theQ test statis-
tic.

3. SIMULATION EXPERIMENTS

3.1. Lag Length Selection

Both theW1 andW2 test statistics require the de-
termination of the autoregressive lag orderp. We
determine this using the Schwartz criterion (SC).
We set the minimum lag as 1 and the maximum lag
(pmax) as 8. The reasons why we apply SC to de-
termine the lag length are: (i) it is consistent; and
(ii) it is frequently used in empirical works. The
SC for the lag orderp, S C(p), is calculated as:

S C(p) = ln |Σ̃| + ln(T − pmax)
n2p

T − pmax
, (7)

whereΣ̃ = (T − pmax)−1∑T
t=(pmax+1)ε̃t ε̃

′
t with ε̃t being

the OLS residuals from (3) fort = (pmax+1), . . . , T .

3.2. The Design for Simulation Experiments

We generated then-variate time seriesyt by the fol-
lowing DGP:

yt = µ + ut, ut = Ψut−i + εt εt ∼ iidN(0,Σ),
(8)

wherei = 1,6 andΣ is ann × n positive definite
matrix. For simplicity we assumed thatΨ = ψIn

andµ = δι, whereι is then-dimensional column
vector of ones. We setR = In and r = 0 in all
cases. Consequently, the variance-covariance ma-
trix of the innovation process in (8),Σ, does not
affect the value of the three test statisticsW1, W2,
and F∗, and thereby we setΣ = In in our simu-
lation experiments. For each Monte Carlo simula-
tion, we generated 50000 series of length (T +100)
from (8) and used the lastT observations to calcu-
late the test statistics. The (nominal) size of each
test was always set equal to 0.05. All computa-
tions were performed using the GAUSS software
with the RNDNS function.

First, we performed simulation experiments to
examine the properties of the test statistics when
H0 holds, with the following parameter settings:

δ = 0; ψ = 0.8,0.6, . . . ,−0.8; n = 1,2,3;

T = 50,100,200,400, . . . , 3200. (9)

We tried the large sample sizes, such asT = 1600
and 3200, in order to observe how size distortions
disappear as the sample size increases.



Table 1: Actual sizes of the test statistics

(n = 2, i = 1)

T ψ = 0.8 0.6 0.4 0.2 0.0 −0.2 −0.4 −0.6 −0.8

50 F∗ 0.207 0.114 0.083 0.065 0.052 0.041 0.029 0.018 0.006

W1(1) 0.306 0.177 0.131 0.107 0.092 0.082 0.074 0.070 0.065

W1(8) 0.292 0.172 0.128 0.105 0.092 0.082 0.078 0.075 0.081

W2(1) 0.307 0.178 0.132 0.109 0.094 0.083 0.076 0.071 0.067

W2(8) 0.293 0.174 0.129 0.107 0.093 0.084 0.079 0.077 0.082

100 F∗ 0.132 0.084 0.067 0.058 0.051 0.045 0.038 0.029 0.015

W1(1) 0.185 0.113 0.090 0.078 0.070 0.066 0.063 0.061 0.059

W1(8) 0.177 0.111 0.089 0.078 0.070 0.066 0.064 0.062 0.064

W2(1) 0.185 0.114 0.090 0.078 0.071 0.066 0.063 0.061 0.059

W2(8) 0.178 0.112 0.089 0.078 0.071 0.066 0.064 0.062 0.064

200 F∗ 0.088 0.065 0.058 0.054 0.050 0.047 0.043 0.037 0.026

W1(1) 0.115 0.081 0.069 0.063 0.059 0.057 0.056 0.054 0.054

W1(8) 0.111 0.079 0.069 0.062 0.059 0.057 0.055 0.055 0.057

W2(1) 0.115 0.081 0.069 0.063 0.059 0.057 0.056 0.054 0.054

W2(8) 0.111 0.079 0.069 0.062 0.059 0.057 0.056 0.055 0.057

400 F∗ 0.070 0.059 0.056 0.053 0.052 0.050 0.048 0.045 0.036

W1(1) 0.082 0.066 0.060 0.057 0.056 0.054 0.054 0.053 0.052

W1(8) 0.081 0.065 0.060 0.057 0.056 0.055 0.054 0.054 0.054

W2(1) 0.082 0.066 0.060 0.057 0.056 0.054 0.054 0.053 0.052

W2(8) 0.081 0.065 0.060 0.057 0.056 0.055 0.054 0.054 0.054

800 F∗ 0.058 0.053 0.051 0.051 0.050 0.049 0.048 0.046 0.041

W1(1) 0.065 0.057 0.054 0.052 0.052 0.051 0.051 0.050 0.050

W1(8) 0.064 0.056 0.054 0.053 0.052 0.052 0.051 0.051 0.050

W2(1) 0.065 0.057 0.054 0.052 0.052 0.051 0.051 0.050 0.050

W2(8) 0.064 0.056 0.054 0.053 0.052 0.052 0.051 0.051 0.050

1600 F∗ 0.054 0.051 0.050 0.050 0.050 0.049 0.049 0.048 0.046

W1(1) 0.056 0.053 0.052 0.051 0.051 0.051 0.050 0.050 0.050

W1(8) 0.056 0.053 0.052 0.052 0.051 0.051 0.051 0.051 0.051

W2(1) 0.056 0.053 0.052 0.051 0.051 0.051 0.050 0.050 0.050

W2(8) 0.056 0.053 0.052 0.052 0.051 0.051 0.051 0.051 0.051

3200 F∗ 0.054 0.052 0.052 0.052 0.052 0.052 0.051 0.051 0.050

W1(1) 0.053 0.051 0.050 0.050 0.050 0.050 0.050 0.050 0.050

W1(8) 0.053 0.051 0.050 0.050 0.050 0.050 0.050 0.050 0.050

W2(1) 0.053 0.051 0.050 0.050 0.050 0.050 0.050 0.050 0.050

W2(8) 0.053 0.051 0.050 0.050 0.050 0.050 0.050 0.050 0.050

Note: Reported are rejection rates of the hypothesisH0 : µ = 0 with 5% asymptotic critical
values for the model (8) withεt being a bivariate standard Gaussian white noise over 50000
replications. The numbers in parenthesis denotepmax.



Table 2: Actual sizes of the test statistics

(n = 2, i = 6)

T ψ = 0.8 0.6 0.4 0.2 0.0 −0.2 −0.4 −0.6 −0.8

50 F∗ 0.508 0.301 0.172 0.097 0.052 0.023 0.009 0.002 0.000

W1(4) 0.693 0.496 0.321 0.185 0.092 0.038 0.012 0.003 0.001

W2(4) 0.799 0.529 0.329 0.188 0.093 0.039 0.014 0.007 0.009

100 F∗ 0.421 0.225 0.133 0.084 0.051 0.029 0.014 0.005 0.001

W1(4) 0.719 0.495 0.304 0.163 0.070 0.023 0.005 0.000 0.000

W2(4) 0.783 0.509 0.306 0.163 0.071 0.023 0.005 0.001 0.000

200 F∗ 0.277 0.146 0.095 0.069 0.050 0.035 0.023 0.012 0.002

W1(4) 0.721 0.483 0.290 0.146 0.059 0.016 0.003 0.000 0.000

W2(4) 0.756 0.488 0.291 0.146 0.059 0.016 0.003 0.000 0.000

400 F∗ 0.168 0.098 0.074 0.061 0.052 0.043 0.034 0.022 0.008

W1(4) 0.719 0.474 0.285 0.142 0.056 0.014 0.002 0.000 0.000

W2(4) 0.738 0.477 0.285 0.142 0.056 0.014 0.002 0.000 0.000

800 F∗ 0.108 0.072 0.060 0.054 0.050 0.045 0.040 0.033 0.019

W1(4) 0.718 0.478 0.283 0.139 0.052 0.012 0.001 0.000 0.000

W2(4) 0.727 0.479 0.283 0.139 0.052 0.012 0.001 0.000 0.000

1600 F∗ 0.078 0.061 0.055 0.052 0.050 0.047 0.044 0.039 0.030

W1(4) 0.718 0.477 0.282 0.138 0.051 0.012 0.001 0.000 0.000

W2(4) 0.722 0.477 0.282 0.138 0.051 0.012 0.001 0.000 0.000

3200 F∗ 0.065 0.057 0.054 0.053 0.052 0.051 0.049 0.046 0.039

W1(4) 0.718 0.477 0.278 0.137 0.050 0.011 0.001 0.000 0.000

W2(4) 0.720 0.477 0.278 0.137 0.050 0.011 0.001 0.000 0.000

Note: Reported are rejection rates of the hypothesisH0 : µ = 0 with 5% asymptotic critical
values for the model (8) withεt being a bivariate standard Gaussian white noise over 50000
replications. The numbers in parenthesis denotepmax.



Table 3: Size-adjusted powers of the test statistics

(n = 2, i = 1, T = 100)

ψ δ = 0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28

0.0 F∗ 0.050 0.066 0.119 0.212 0.340 0.484 0.622 0.738

W1(1) 0.050 0.074 0.150 0.288 0.476 0.671 0.832 0.929

W1(8) 0.050 0.074 0.150 0.287 0.476 0.671 0.832 0.929

W2(1) 0.050 0.074 0.151 0.290 0.478 0.676 0.835 0.932

W2(8) 0.050 0.074 0.151 0.290 0.478 0.675 0.835 0.932

0.4 F∗ 0.050 0.055 0.072 0.103 0.148 0.206 0.275 0.354

W1(1) 0.050 0.057 0.082 0.123 0.185 0.269 0.372 0.486

W1(8) 0.050 0.057 0.082 0.123 0.185 0.269 0.372 0.486

W2(1) 0.050 0.058 0.083 0.125 0.187 0.275 0.378 0.493

W2(8) 0.050 0.058 0.083 0.125 0.187 0.274 0.378 0.493

−0.4 F∗ 0.050 0.083 0.194 0.379 0.585 0.756 0.870 0.934

W1(1) 0.050 0.098 0.260 0.527 0.788 0.938 0.989 0.999

W1(8) 0.050 0.098 0.260 0.527 0.788 0.937 0.989 0.999

W2(1) 0.050 0.099 0.261 0.529 0.789 0.939 0.989 0.999

W2(8) 0.050 0.099 0.261 0.529 0.789 0.939 0.989 0.999

Note: Reported are size-adjusted rejection rates of the hypothesisH0 : µ = 0 with 5%
asymptotic critical values for the model (8) withεt being a bivariate standard Gaussian white
noise over 50000 replications. The numbers in parenthesis denotepmax.



Second, we performed simulation experiments to
examine the properties of the test statistics when
H0 does not hold, with the following parameter set-
tings:

δ = 0.00,0.04, . . . ,0.28; ψ = 0.4,0.0,−0.4;

i = 1; n = 1,2,3; T = 50,100,200. (10)

3.3. Simulation Results

In this subsection, we report the simulation results.
In order to save space, we only show selected re-
sults.

Table 1 tabulates the rejection rates for the case
whereδ = 0, i = 1, andn = 2. Wheni = 1,
since DGP is a VAR model of order one, the rejec-
tion rates forW1(1) andW2(1) are the results cor-
responding to the case where the correct lag length
is known. From this table, we observe that when
0 ≤ ψ, F∗ exceedsW1 andW2 in terms of size sta-
bility even if the correct lag length is known. For
example, for the case whereT = 100 andψ = 0.6,
the actual size ofF∗ is 0.084, while that ofW1(1) is
0.113. On the other hand, whenψ < 0 and the sam-
ple sizes are relatively small, it is observed thatF∗
suffers from conservative size distortion, whileW1

andW2 show relatively stable performances. For
example, for the case whereT = 100 andψ =
−0.6, the actual size ofF∗ is 0.029, while that of
W1(1) is 0.061. AlthoughF∗ suffers from larger
size distortions in absolute value, it is a conserva-
tive size distortion and so it is notable that when
H0 is rejected withF∗, the result is reliable.

Table 2 reports rejection rates for the case where
δ = 0, i = 6, andn = 2. We setpmax = 4 so that
we can see howW1 andW2 perform when the lag
length is underestimated. On the other hand, be-
causeF∗ does not depend onpmax, at least in large
samples, fairly good performance is expected. From
this table, we can observe that, when size distor-
tions are liberal,W1 andW2 suffer from severe size
distortions even when 800≤ T , while the size dis-
tortions ofF∗ are small with such sample sizes. For
example, in the case whereT = 1600 andψ = 0.6,
the actual size ofF∗ is 0.061, while that ofWj(4)
is 0.477 for j = 1,2. Even in small samples,F∗ is
much more stable thanW1(4) andW2(4). For ex-
ample, in the case whereT = 100 andψ = 0.6, the
actual size ofF∗ is 0.225, while that ofW1(4) is
0.495 and that ofW2(4) is 0.509. When size distor-
tions are conservative, it is observed that in most
casesF∗ excelsW1(4) andW2(4). For example, in
the case whereT = 200 andψ = −0.4, the actual
size ofF∗ is 0.023, while that ofW1( j) is 0.003 for
j = 1,2.

Table 3 shows size-adjusted rejection rates when
δ increases from 0. From this table, we can observe
that W1 andW2 are more powerful thanF∗ in all
cases. For example, in the case whereT = 100,
ψ = 0, andδ = 0.12, the size-adjusted rejection
rate ofF∗ is 0.212, while that ofW1(8) is 0.287.

4. CONCLUSION

In this paper, we have investigated the sampling
performance of alternative testing procedures of
the hypothesis testing for the mean of the station-
ary vector autoregressive (VAR) process. Two of
these procedures are conventional methods, such
as the Wald test statistic. The other one is the
method which is recently developed by Kiefer, Vo-
gelsang and Bunzel (2000).

Our findings from the Monte Carlo simulation
experiments may be summarized as follows:

(i) The size distortions of theF∗ test statistic
are smaller than those of theW1 andW2 test
statistics when both tests have liberal size
distortions.

(ii) When pmax is less than the true lag length,
W1 and W2 suffer from severe size distor-
tions caused by mis-specification, whileF∗
generally shows good performance.

(iii) There are some cases whereF∗ suffers from
larger size distortions in absolute value, but
they are only conservative, rather than lib-
eral, size distortions.

(iv) The size-adjusted powers ofW1 andW2 are
higher than those ofF∗.

These results imply that there seems to be an unfor-
tunate trade-off between the size and power prop-
erties, that is,F∗ generally excelsW1 and W2 in
terms of the size stability, whileW1 andW2 have
higher power thanF∗.
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