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Abstract: This paper deals with the hypothesis testing for the mean of the stationary vector autoregressive
(VAR) processWe considethesituationin which aresearcher'smteresties, notin detectinghelagorder

of the VAR model angbr in estimating coicient matrices of the model, but in testing the hypothesis on

the mean of the stationary VAR process. We investigate the finite sample performance of alternative testing
procedures that are applicable in such situations. Two of these procedures are conventional methods, such
asthe Wald teststatistic. This approactrequiresthe determinationof the lag order of the VAR model

and estimation of caicient matrices of the model, which are nuisance parameters for the researcher.
The other one is the method which is recently developed by Kiefer, Vogelsang and Bunzel (2000). The
comparative advantage of the approach is that it does not require such unnecessary inferences. On the
other hand, the approach uses artificial accumulation of incorrectly specified OLS residuals, which could
be costly in finite samples. Our aim is to provide some useful information for the researcher to select one
of these procedures through Monte Carlo simulation experiments.
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1. INTRODUCTION cess of ordep with meanu. The hypothesis test-

. ) ) . ing can be performed with conventional test statis-
In this paper, we deal with the hypothesis testingyjcs sych as the Wald test statistic, which uses or-

forthe mean of the-variate vector ime serieg = ginary |east squares (OLS) estimators for the co-
(Vat, - - yn)" Which is generated by the following - eficient matrices of the following-th order VAR
model: model:

Vi = { + U, E(Ut) = O, t= l, e ,T. (1) Vi = ﬂ* + ‘I’ly’[—l et \I’pyt—p + &, (3)

Then, the hypothesis for the mean of the vector

time ser.iesyt, can be represented dsy : Ru =1 naiho requires the determination of the lag order
andH, : Ru # r, whereRis anmx n full-row- ot he AR model as well as OLS estimators of the
rank-matrix and is anm-dimensional column vec- codficient matrices of the VAR model (3), which

tor. For an economic example of, R, andr, 46 nyisance parameters for the researcher because
suppose tha is constructed by two stock index piq o her interest lies in testing the hypothesis for
returns from two dierent stock markets, then the the mean ofy,.. These requirements could be con-
hypothesis whether or not the means of these Stoc%idered as drawbacks of the procedure.

returns are equal can be expressedRby (1,-1) Recently, Kiefer, Vogelsang and Bunzel (2000)
andr = 0. proposed a new approach, which is attractive be-

In this paper Wef suppose thatin (1) is.gener- cause it does not require the determination of the
ated by the following vector autoregressive (VAR) lag length angbr the estimation of the nuisance

whereu* = (In—W1—---—¥p) tu. However, this

model: codficient matrices. However, this method uses a
F(L)u = &, @) partial sum process of OLS residuals from a mis-
where¥(L) = I, - ¥1L —--- — ¥,LP and all roots specified model, which could be costly in finite

of [¥(2)| = 0 are outside the unit circle aridde- ~ samples. In this paper, we attempt to provide in-
notes the lag operator. We further suppose ¢éhat formation as to which procedure is more appropri-
is an independently and identically distributed (iid) ate for the researcher, through the use of Monte
sequence with meah, finite fourth moments, and Carlo simulation experiments. This paper is orga-
E(e€/) = T, whereX is a positive definite matrix. ~ hized as follows. In Section 2, we introduce two
Under the assumptions above, the vector time seconventional methods and the procedure of Kiefer,
ries, yt, is a stationary vector autoregressive pro- Vogelsang and Bunzel (2000). In Section 3, we
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show some simulation results. Our conclusion isnuisance-parameter free, although it is nonstandard.
provided in Section 4. Because Kiefer, Vogelsang and Bunzel (2000) sim-
ulated and provided asymptotic critical values for
Win(1) ( sVen(9)Vin()' d8) " Win(1)/m, we use the
2.1. Conventional Procedures F*(= Q/m) test statistic instead of th@ test statis-

tic.

2. ALTERNATIVE PROCEDURES

We defineft = (In — W1 — --- — ¥,) 1", where

(i, Wy, - - ,‘i’p) is the matrix of OLS estimators 3. SIMULATION EXPERIMENTS

for (u*, W1, -- ,'¥p). From Liltokepohl (1993, p.77), .

T*(1 — u) = N(0,Q), where “=" denotes weak 3.1 LagLength Sclection

convergence]* = (T — p), andQ = (I, - V1 - Both theW; andW, test statistics require the de-

s = W) 1E(ly - W1 — -+ — ¥p) V. Then, under  termination of the autoregressive lag orgerWe

Ho, T*Y2(Rix — r) = N(0, RQR’), and hence the determine this using the Schwartz criterion (SC).

asymptotic null distribution of the followinyV; We set the minimum lag as 1 and the maximum lag

test statistic isy? distribution with m degrees of  (pmax) @s 8. The reasons why we apply SC to de-

freedom: termine the lag length are: (i) it is consistent; and
. (ii) it is frequently used in empirical works. The

Wi = T*(Ria - r)(RQR) ™ (Riz—r1), (4  SC for the lag ordep, SC(p), is calculated as:

whereQ = (In- W1 —---—¥p) 12l - W1 - —
W)V Here,£ = T1yL  && with & being
the OLS residuals from (3) fdr= (p+ 1),...,T. N

In addition, from Litokepohl (1993, p.77), we WhereZ = (T — pre) * L (p,..1)&& With & being
seeTY2(j1 — yu) = N(0, ), whereji = T‘thTﬂYt- the OLS residuals from (3) far= (pmax+1),..., T.
Hence, the asymptotic null distribution of the fol-
lowing W, test statistic is alsg? distribution with
mdegrees of freedom: We generated the-variate time serieg by the fol-
lowing DGP:

n’p

SC(p) =1In |i| +In(T - pmax)ﬁ,
max

(7

3.2. TheDesign for Simulation Experiments

Wo = T(Rit - 1) (RQR) (R —1).  (5)
. Vi=p+U, U=%YU_i+& €~ iid N(O, Z),
2.2. An Alternative Procedure (8)
wherei = 1,6 andX is ann x n positive definite

In this subsection, we introduce the approach de . R
bp matrix. For simplicity we assumed th# = yl,

veloped by Kiefer, Vogelsang and Bunzel (2000). du = 1 wh i the n-di ional col
(Although the multivariate regression model is not 3N%# = o, Wherec s then-dimensional coiumn
vector of ones. We seR = |, andr = O in all

discussed in their paper, the extension is straight- c tv. th . .
forward.) We defindl, = y; — ji, andd can be cases. Consequently, the variance-covariance ma-

expressed as; — (ji — u). Then, from the func- trix of the innovation process in (8):_, c_loes not
tional central limit theorem (FCLT) and the con- affect*the value of the three test stgtlSth, .WZ’
tinuous mapping theorem, we s’e'el/ngf]ﬂt = an_d F, and_ thereby we sé = 1, in our simu-
AV (S), WhereVn(s) = Wa(s) — SWa(1) andA is Igtlon experiments. For each.Monte Carlo simula-
a matrix such tha® = AA’. Here, Wy () denotes tion, we generated 50000 series of lendgth-(100)

an n-dimensional standard Brownian motion and from (8) and used the a3t observations 1o calcu-

[T denotes the largest integer that is less thanlate the test statistics. The (nominal) size of each

test was always set equal to 0.05. All computa-
or equal toTs wheres € [0,1]. Consequently, . .
with the definition of& = thzlﬁj! we see that tions were performed using the GAUSS software

with the RNDNS function.

) - S 1 ’ ’ . . . .
Q = T230,SS = A Va(9Va(9'd9)A". In First, we performed simulation experiments to
addition, underHo, TY2(Rii — 1) = RAW,(1).  examine the properties of the test statistics when
Thereby, undeHy: Ho holds, with the following parameter settings:
Q=T(Ri - r)(RQR)*(Rji - 1) 5=0. ¢=0806,...,-08 n=123;
= Win(1)'([ évm(s)vm(s)’ds)‘lwm(l). (6) T =50,100,200,40Q,...,3200 (9)

It is noteworthy that the asymptotic null distribu- We tried the large sample sizes, suctilfas 1600
tion of the test statistic depends only on the num-and 3200, in order to observe how size distortions

ber of restrictionsm, and that the distribution is disappear as the sample size increases.



Table 1: Actual sizes of the test statistics
(n=2,i=1)

T y= 0.8 0.6 0.4 0.2 00 -02 -04 -06 -08

50 F* 0.207 0.114 0.083 0.065 0.052 0.041 0.029 0.018 0.006
Wi(1) 0.306 0.177 0.131 0.107 0.092 0.082 0.074 0.070 0.065
W;(8) 0.292 0.172 0.128 0.105 0.092 0.082 0.078 0.075 0.081
W,(1) 0.307 0.178 0.132 0.109 0.094 0.083 0.076 0.071 0.067
W,(8) 0.293 0.174 0.129 0.107 0.093 0.084 0.079 0.077 0.082

100 F* 0.132 0.084 0.067 0.058 0.051 0.045 0.038 0.029 0.015
Wi(1) 0.185 0.113 0.090 0.078 0.070 0.066 0.063 0.061 0.059
W (8) 0.177 0.111 0.089 0.078 0.070 0.066 0.064 0.062 0.064
W,r(1) 0.185 0.114 0.090 0.078 0.071 0.066 0.063 0.061 0.059
W,(8) 0.178 0.112 0.089 0.078 0.071 0.066 0.064 0.062 0.064

200 F* 0.088 0.065 0.058 0.054 0.050 0.047 0.043 0.037 0.026
Wi(1) 0.115 0.081 0.069 0.063 0.059 0.057 0.056 0.054 0.054
Wi(8) 0.111 0.079 0.069 0.062 0.059 0.057 0.055 0.055 0.057
W,(1) 0.115 0.081 0.069 0.063 0.059 0.057 0.056 0.054 0.054
Wx(8) 0.111 0.079 0.069 0.062 0.059 0.057 0.056 0.055 0.057

400 F* 0.070 0.059 0.056 0.053 0.052 0.050 0.048 0.045 0.036
W;(1) 0.082 0.066 0.060 0.057 0.056 0.054 0.054 0.053 0.052
Wi(8) 0.081 0.065 0.060 0.057 0.056 0.055 0.054 0.054 0.054
W,(1) 0.082 0.066 0.060 0.057 0.056 0.054 0.054 0.053 0.052
W,(8) 0.081 0.065 0.060 0.057 0.056 0.055 0.054 0.054 0.054

800 F- 0.058 0.053 0.051 0.051 0.050 0.049 0.048 0.046 0.041
Wi(1) 0.065 0.057 0.054 0.052 0.052 0.051 0.051 0.050 0.050
W;(8) 0.064 0.056 0.054 0.053 0.052 0.052 0.051 0.051 0.050
W,(1) 0.065 0.057 0.054 0.052 0.052 0.051 0.051 0.050 0.050
W,(8) 0.064 0.056 0.054 0.053 0.052 0.052 0.051 0.051 0.050

1600 F* 0.054 0.051 0.050 0.050 0.050 0.049 0.049 0.048 0.046
Wi(1) 0.056 0.053 0.052 0.051 0.051 0.051 0.050 0.050 0.050
W;(8) 0.056 0.053 0.052 0.052 0.051 0.051 0.051 0.051 0.051
W,(1) 0.056 0.053 0.052 0.051 0.051 0.051 0.050 0.050 0.050
W,(8) 0.056 0.053 0.052 0.052 0.051 0.051 0.051 0.051 0.051

3200 F* 0.054 0.052 0.052 0.052 0.052 0.052 0.051 0.051 0.050
W;(1) 0.053 0.051 0.050 0.050 0.050 0.050 0.050 0.050 0.050
Wi(8) 0.053 0.051 0.050 0.050 0.050 0.050 0.050 0.050 0.050
W,(1) 0.053 0.051 0.050 0.050 0.050 0.050 0.050 0.050 0.050
W,(8) 0.053 0.051 0.050 0.050 0.050 0.050 0.050 0.050 0.050

Note: Reported are rejection rates of the hypothklgis 4 = 0 with 5% asymptotic critical
values for the model (8) witk being a bivariate standard Gaussian white noise over 50000
replications. The numbers in parenthesis demgts.



Table 2: Actual sizes of the test statistics
(n=2,i=6)

T y= 0.8 0.6 0.4 0.2 00 -02 -04 -06 -08

50 F* 0.508 0.301 0.172 0.097 0.052 0.023 0.009 0.002 0.000
Wi(4) 0.693 0.496 0.321 0.185 0.092 0.038 0.012 0.003 0.001
W(4) 0.799 0529 0.329 0.188 0.093 0.039 0.014 0.007 0.009

100 F* 0.421 0.225 0.133 0.084 0.051 0.029 0.014 0.005 0.001
W;(4) 0.719 0.495 0.304 0.163 0.070 0.023 0.005 0.000 0.000
W,(4) 0.783 0.509 0.306 0.163 0.071 0.023 0.005 0.001 0.000

200 F* 0.277 0.146 0.095 0.069 0.050 0.035 0.023 0.012 0.002
W;(4) 0.721 0.483 0.290 0.146 0.059 0.016 0.003 0.000 0.000
Wo(4) 0.756 0.488 0.291 0.146 0.059 0.016 0.003 0.000 0.000

400 F* 0.168 0.098 0.074 0.061 0.052 0.043 0.034 0.022 0.008
W;(4) 0.719 0.474 0.285 0.142 0.056 0.014 0.002 0.000 0.000
Wr(4) 0.738 0.477 0.285 0.142 0.056 0.014 0.002 0.000 0.000

800 F* 0.108 0.072 0.060 0.054 0.050 0.045 0.040 0.033 0.019
W;(4) 0.718 0.478 0.283 0.139 0.052 0.012 0.001 0.000 0.000
W,r(4) 0.727 0.479 0.283 0.139 0.052 0.012 0.001 0.000 0.000

1600 F* 0.078 0.061 0.055 0.052 0.050 0.047 0.044 0.039 0.030
W;(4) 0.718 0.477 0.282 0.138 0.051 0.012 0.001 0.000 0.000
W,(4) 0.722 0.477 0.282 0.138 0.051 0.012 0.001 0.000 0.000

3200 F* 0.065 0.057 0.054 0.053 0.052 0.051 0.049 0.046 0.039
Wi(4) 0.718 0.477 0.278 0.137 0.050 0.011 0.001 0.000 0.000
W,(4) 0.720 0.477 0.278 0.137 0.050 0.011 0.001 0.000 0.000

Note: Reported are rejection rates of the hypothElgis u = 0 with 5% asymptotic critical
values for the model (8) witle; being a bivariate standard Gaussian white noise over 50000
replications. The numbers in parenthesis demgis.



Table 3: Size-adjusted powers of the test statistics
(n=2,i=1,T =100)

Yy 0= 000 004 008 012 016 020 024 0.28

00 F* 0.050 0.066 0.119 0.212 0.340 0.484 0.622 0.738
W;(1) 0.050 0.074 0.150 0.288 0.476 0.671 0.832 0.929
Wi(8) 0.050 0.074 0.150 0.287 0.476 0.671 0.832 0.929
W,(1) 0.050 0.074 0.151 0.290 0.478 0.676 0.835 0.932
W,(8) 0.050 0.074 0.151 0.290 0.478 0.675 0.835 0.932

04 F* 0.050 0.055 0.072 0.103 0.148 0.206 0.275 0.354
Wi(1) 0.050 0.057 0.082 0.123 0.185 0.269 0.372 0.486
W;(8) 0.050 0.057 0.082 0.123 0.185 0.269 0.372 0.486
W(1) 0.050 0.058 0.083 0.125 0.187 0.275 0.378 0.493
W,(8) 0.050 0.058 0.083 0.125 0.187 0.274 0.378 0.493

-0.4 F* 0.050 0.083 0.194 0.379 0.585 0.756 0.870 0.934
Wi(1) 0.050 0.098 0.260 0.527 0.788 0.938 0.989 0.999
Wi(8) 0.050 0.098 0.260 0.527 0.788 0.937 0.989 0.999
W,(1) 0.050 0.099 0.261 0.529 0.789 0.939 0.989 0.999
W,(8) 0.050 0.099 0.261 0.529 0.789 0.939 0.989 0.999

Note: Reported are size-adjusted rejection rates of the hypothigsisy = 0 with 5%
asymptotic critical values for the model (8) withbeing a bivariate standard Gaussian white
noise over 50000 replications. The numbers in parenthesis dprgte



Second, we performed simulation experiments to Table 3 shows size-adjusted rejection rates when
examine the properties of the test statistics whens increases from 0. From this table, we can observe
Ho does not hold, with the following parameter set- thatW; andW, are more powerful thaf* in all
tings: cases. For example, in the case whére- 100,
¥ = 0, ands = 0.12, the size-adjusted rejection
6 =0.00,0.04,...,0.28;  =0.4,0.0,-04; rate of F* is 0.212, while that ofV;(8) is 0.287.

3.3. Simulation Results In this paper, we have investigated the sampling

. . . : performance of alternative testing procedures of

In this subsection, we report the simulation results. . . .
the hypothesis testing for the mean of the station-

In order to save space, we only show selected re- .
ary vector autoregressive (VAR) process. Two of

sults. .

these procedures are conventional methods, such

Table 1 tabulates the rejection rates for the case - .
wheres = 0,1 = 1, andn = 2. Wheni = 1, as the Wald test statistic. The other one is the

since DGP is a VAR model of order one, the rejec- method which is recently developed by Kiefer, Vo-

tion rates folW; (1) andW,(1) are the results cor- gelsang a’?d Bunzel (2000). . .

; Our findings from the Monte Carlo simulation
responding to the case where the correct lag Iengthex eriments mav be summarized as follows:
is known. From this table, we observe that when P y '
0 < ¢, F* exceeddV,; andW; in terms of size sta- (i) The size distortions of th&* test statistic
bility even if the correct lag length is known. For are smaller than those of thé, andW, test

example, for the case whefe= 100 andy = 0.6,
the actual size of* is 0.084, while that oV (1) is

0.113. On the other hand, whe¢n< 0 and the sam-

ple sizes are relatively small, it is observed tRat
sufers from conservative size distortion, whilg

statistics when both tests have liberal size
distortions.

When prax is less than the true lag length,
W; andW, sufer from severe size distor-
tions caused by mis-specification, whité

andW, show relatively stable performances. For
example, for the case whefie = 100 andy =
-0.6, the actual size of* is 0.029, while that of
W;(1) is 0.061. AlthoughF* sufers from larger they are only conservative, rather than lib-
size distortions in absolute value, it is a conserva- eral, size distortions.
tive size distortion and so it is notable that when (iv) The size-adjusted powers @; andW, are
Ho is rejected withF*, the result is reliable. higher than those d¥*.

Table 2 reports rejection rates for the case wher

generally shows good performance.
(iii) There are some cases whd¥esufers from
larger size distortions in absolute value, but

These results imply that there seems to be an unfor-

we-: c%r: s:egyh?)r\])«(/jvn a:nfj-vvweesr?éenrﬁxw:h:nst%éhlzt tunate trade-b between the size and power prop-
v 2P 9  erties, that isF* generally exceldV; and W, in

length |*s underestimated. On the other_ hand, be'terms of the size stability, whiléV; andW, have
cause-* does not depend Ophy, at least in large hi .

) . igher power thaif*.
samples, fairly good performance is expected. From
this table, we can observe that, when size distor5, ACKNOWLEDGEMENTS
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