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1. Introduction 
 
In traditional time series analysis investigators 
are concerned with the behaviour of the 
variable of interest (i.e. price, volume, 
temperature etc) separated by equally (or 
unequally)spaced fixed time points.That is, in 
this case, the time process is considered as 
being non-stochastic.The general time series 
theory of Auto-regressive Moving Average 
(ARMA) (see Box and Jenkins (1976)) or 
some of its modifications (see Brockwell and 
Davis (1991)) can be used in the modelling 
and forecasting of such situations. Although 
many financial data may be treated as time 
series, the standard techniques of time series 
analysis cannot be employed here directly due 
to the rapid variation of the time intervals. 
Since many finance problems involve the 
arrival of events such as prices or trades in 
irregular time intervals, a new direction of 
modelling is necessary to explain the 
properties of such data.With that view in mind 
Engle and Russell (1998) introduced a new 
class of models called “Autogressive 
Conditional Duration ”(ACD) models. The 
formulation of this ACD class of models 
focuses on the inter-temporal correlations of 
the durations or the time intervals between 
events. In Section 2, we review this ACD class 
of models in order to form a basis of this 
paper. 
 
 
 
 
 

2. ACD Models and their Properties 
 
Transaction data can be described by two types 
of random variables. One is the time of the 
transaction and the other is the observation 
(called marks) at the time of the transaction. It 
is well know that financial data inherently 
arrive in irregular time intervals and 
investigators are concerned not only with the 
variable of interest (ie. price, quote, volume), 
but also the time of each incident. Thus in 
many financial modelling problems, the 
variable ‘time ’is considered as stochastic 
(or random) and the corresponding analysis 
proposes an alternative method to the 
traditional fixed time (or interval) analysis. 
Now the statistical problem is to estimate the 
probability of a event, for example, the price at 
each time point. This requires specifying the 
stochastic process of arrival times, estimating 
the parameters and computing the probability 
of events.The instantaneous probability of an 
event is called the intensity of the process. In 
dependent processes this intensity is obtained 
by conditioning on past information.  

Consider a sequence of arrival times 
T1 , T2 , ···,TN from a particular point process, 
where Ti is the time at which the ith trade 
occurs and T1 <T2 <T<···<TN . Suppose that the 
observation at time Ti is denoted by Xi. Denote 
by Fi the σ field generated by all random 
variables {(Ti , Xi ); 1≤ i  ≤ N }. Let N (T ) be 
the number of transactions (or  events) 
occurring by time T . Obviously, N (T ) is a 
(non-decreasing) step function of time with N 
(T0 ) = 0. (N(T) is continuous from the left 
with limits from the right). Define the 
conditional intensity of a process λ as 
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A function similar to that of (2.1) is used in 
survival analysis and is called the hazard 
function (see, for example Kalbfleisch and 
Prentice (1980)). 

Let Di be the interval between two 
events (or waiting times) for the events at 
Ti and Ti-1 such that 
 
Di =Ti - Ti-1 ; i =1, 2, · · ·, N.           (2.2) 
 
Note that the values of Di are the ith duration 
between ith and (i-1)th trades. 
Consider the conditional expectation of Di as 
give below: 
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where ψi is a function of Di-1, · · ·, D1 and Θ is 
a vector of parameters such that 
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It is obvious that ψi > 0 since Di > 0. 

A new class of models for possibly 
unequally spaced correlated data (example, 
financial data) is developed via the dependence 
of the conditional intensity on the past 
durations. The crucial assumption for this class 
of models is that the dependence can be 
summarized by a function ψi (the conditional 
expected duration give past information) with 
the property that ψi /Di are independent and 
identically distributed (iid) random variables. 
Equivalently,write 
 

Di = ψiei,               (2.5) 
 

where ei’s are iid random variables with the 
probability density function P0 (e;Φ), which 
must be specified, and Φ and Θ are variation 
free. Further assume that ei’s are independent 
of Di and E(ei |Fi-1 ) = 1. Since the durations 
and expected durations are positive, the 
multiplicative disturbance naturally will have 
positive probability only for positive values 
and it must have a mean of unity.This 
assumption requires that all the temporal 
dependence in the durations be captured by the 
mean function. This assumption is testable in 
practice using the standardized durations. 

A new class of models is developed 
based o the parameterizations of (2.3) and 
(2.5). It is clear that the probabilistic structure 
of Di is similar to that of an autoregressive 
(AR) process and hence the class of models 
described by (2.3) and (2.5) are called 
autoregressive conditional duration (ACD) 

models since the conditional expectations of 
the durations, Di, will depend upon the past 
durations Di-1, Di-2, …….. D1 as in the AR 
situation. 

It is possible to define a family of 
ACD models satisfying (2.3) and (2.5) via 
different specifications for ψ and for the 
distributions of e. 

Define 
 

S0(t )=P0(e ≥ t), t>0 ,           (2.6) 
where S0(t) can be considered as the survival 
function associated with {et}. 

Clearly, 
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the baseline hazard function since it does not 
depend upon any conditioning information. 
Now we state an important result from Engle 
and Russell (1998). 
 
Result 1: The conditional intensity for an ACD 
model based on (2.3) and (2.5) is given by 
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This indicates that the past history influences 
the conditional intensity by both a 
multiplicative effect and a shift in the baseline 
hazard function. 
It is easy to verify that when the durations are 
conditionally exponential, the baseline hazard 
function is unity and in this case the 
conditional intensity in (2.7) reduces to 
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Now we consider some general forms of the 
ACD class in Section 3. 
 
 
3. General ACD Models 
 
Consider the class of models given by 
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where ω > 0 and αj and βj are non-negative 
constants, D0 =  ψ0 =0  and p and q are the 
orders of the corresponding lags. 

This is called a ACD (p,q) memory 
model or simply an ACD (p,q). This model 
(3.1) implies that only the most recent p actual 
durations and recent q expected durations 
influence the conditional mean durations. This 
model (3.1) introduces an ACD family with 
infinite memory specifications of the intensity. 
Let ξi = Di  - ψi. Now (3.1) reduces to 
 



The unconditional mean in (3.7), in this case 
reduces to 

)2.3()(

)(

1

'

1

11

iji

q

j
jji

p

j
jji

jiji

q

j
jji

p

j
jii

DD

or

DDD

ξξββαω

ξβαωξ

+−++=

−++=−

−
=

−
=

−−
=

−
=

∑∑

∑∑

 

)9.3(
)(1 βα

ωµ
+−

=  

The corresponding unconditional variance of 
this ACD (1,1) in (3.8) is 
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where  p′ =max (p, q). 
provided α+β<1 ,  β2 +2αβ < 1, and β2 +2αβ  
+ 2 α2 < 1. 

Clearly, (3.2) is a ARMA (p, q) type model 
with highly auto-correlated innovations. 

In this case it is easy to verify that NOTE: When q = 0, (3.1) reduces to 
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exhibits the excess dispersion of the variable 
Di as often noticed (in econometrics) in 
duration data. 

This is a simple p-memory specification of the 
intensity. In this case the most recent p 
durations influenced the conditional duration 
ψi. Obviously, (3.3) reduces to an AR type 
model with autocorrelated innovations 
satisfying 

Although this ACD (1,1) given in 
(3.8) seems to be a very useful member of this 
class of models in practice, in Section 4,in 
brief, we describe the identification and 
estimation procedures in general.  
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4. Parameter Estimation Equations (3.2) and (3.4) are useful ARMA 

type models for durations. Forecasts for 
waiting times can be obtained from these 
representations using the standard ARMA 
theory. For example, the one-step-ahead mmse 
forecast function, DT(1) of DT+1 based on (3.2) 
(assuming αj and  βj are know ) is 

 
Specifications of (3.1) can be generalized in 
many ways using different distributions for ei. 
In view of the non-negativity of Di, a natural 
(and more popular) form of the distribution of 
ei is the Weibull with the probability density 
function 
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where θ ≥ 0,and κ,γ  > 0. 
The failure rate function or the baseline hazard 
function associated with (4.1) is The one-step-ahead mmse forecast function, 

DT(1) of DT+1 based on (3.4) is simply )2.4()( 1
0
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From (2.7), the conditional intensity in terms 
of Ψi is 
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However, the model (3.1) is convenient in 
theoretical development as it allows various 
moments to be calculated easily. From (3.1), it 
is obvious that the un-conditional mean of Di is where Γ(.) is the gamma function. 
 When γ = 1, (4.3) reduces to the 

conditional intensity for the exponential case. )7.3(
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The parameters of (3.1) can be estimated by 
maximizing the corresponding log likelihood 
function 

where 0 < ∑ αj +  ∑ βj < 1. 
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For example, when p = 1 = q, the 
corresponding standard ACD (1,1) 
specification is given by 

 [See Allen, McDonald and Yang (2001)].  
To evaluate (4.4), one needs some 
parameterization of ψi . For example, for an 

ψi = ω + αD i -1 + βψi-1 .               (3.8) 
 



ACD (1,1) (as in (3.8)), ψi, i > 1, is recursively 
obtained with the initial value ψ0 = α. 
 
 
5. An Application 
 
The data sets used in this paper are based on a 
sample of high frequency transactions data 
acquired from the Securities Industry Research 
Centre of the Asia-Pacific (SIRCA). The quote 
prices are viewed trade by trade for a listed 
Australian company, News Corporation from 
the Sydney Stock Exchange over a period of 
sixty-two trading days in the first quarter of 
2000. As suggested by Lee and Ready (1991), 
for every transaction the prevailing quote is the 
last quote which appears at least five seconds 
before the transaction itself. All transactions 
that occurred from 10:10 am to 4:00 pm are 
adopted for every trading day. The first ten 
minutes trading at the opening and the 
overnight price change are removed 
to avoid the influences of overnight news 
arrival. News Corporation has an average 
market capitalisation of 37.8 billion dollars and 
an average share price over the sample period 
of A$21.96. Summary statistics for this stock 
and the ACD(1,1) estimates using (4.4) are 
presented in the Table below: 
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