
Prediction for Decision-Making under Uncertainty  
J. P. Norton 

Integrated Catchment Assessment & Management, The Australian National University, Canberra, Australia. 

School of Engineering (EECE), The University of Birmingham, UK 

 

Abstract: A primary use for mathematical models, in fields such as environmental management, economics 
and engineering, is prediction. Prediction can aid choice between decisions by assessing their consequences, 
or between models by comparing their prediction performance. Choice between models raises fewer 
questions of how to use predictions, and this paper concentrates instead on prediction for decision-making. It 
starts with an illustration of how systematic but easily overlooked modelling error can spoil prediction. Three 
radically differing approaches to supporting decision-making with imprecise predictions are then reviewed: 
Bayesian optimal decision theory, model predictive control and set-membership prediction. Their potential 
and limitations as aids to environmental decision-making are discussed. 
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1. INTRODUCTION 

Prediction is only one of the possible objectives 
of mathematical modelling in fields such as 
environmental management, economics and 
engineering. A model can be viewed, at the 
simplest, as just a concise summary of knowledge 
about a system. Conciseness is valuable as (aside 
from statistical considerations) it forces 
selectivity and may expose behaviour buried in 
the raw data. Construction of a concise model can 
also reveal deficiencies in data and limits to 
knowledge. Much may thus be learnt from a 
model even if it never gets as far as prediction. 

Prediction is central, however, in at least two 
areas. In scientific hypothesis testing, predictions 
are compared with observation but the prediction 
model is usually a law or principle, fixed in form 
and so highly reduced as to leave little room for 
doubt about how it should be used. The picture is 
quite different in “what if?” experiments on 
elaborate simulation models, carried out, for  
instance, to guide management of environmental 
systems. Here questions arise about adequacy and 
economy of model form, sufficient exploration of 
the state and inputs of the  model and the system, 
reliability and uncertainty of the results, and 
computing load. In this context, prediction has the 
ultimate aim of aiding choice, either between 
management decisions by assessing their 
consequences or between models by comparing 
their prediction performance. In choosing 
between models, the quality of prediction is 
measured retrospectively. By contrast, decision-
making requires that the quality of predictions be 

assessed in advance or that the outcomes be made 
insensitive to the prediction uncertainty by 
monitoring the system and revising decisions as 
necessary (as in Section 4). Prediction for 
decision-making is thus more demanding than 
prediction for model selection. 

Section 2 presents a cautionary example of how 
prediction performance can be ruined by an easily 
overlooked feature of system behaviour, even in 
the absence of unpredictable disturbances or 
system changes. The next three sections offer 
three very different ways to tackle prediction 
under uncertainty. Section 3 looks at the much 
discussed but little used tool of Bayes optimal 
decision theory. It has widely recognised 
limitations for practical decision-making but 
provides a framework in which to examine the 
basic operations of prediction and optimisation 
under uncertainty. Another reason for re-
examining it is that increased computing 
capability is making these operations much easier. 
In sharp contrast to this theory-driven approach, 
Section 4 summarises model predictive control, a 
heuristic scheme for sequential decision-making 
under uncertainty which grew up in process 
control and may have lessons for other areas of 
application. By exploiting feedback, it achieves 
robust performance without asking for uncertainty 
to be characterised. It can also incorporate 
constraints on control action and system 
variables. A third  way to attack prediction is 
outlined in Section 5: a very new set-membership 
approach to prediction in non-linear dynamical 
systems, which assumes very little about the form 
of the model. It is hoped that these widely 



differing techniques will suggest ways to make 
predictive decision-making more systematic. 

2. PREDICTION EXAMPLE 

2.1.  System simulated 

The example will show how systematic error in a 
prediction model is easily overlooked even in 
favourable conditions, and how common 
diagnostics differ greatly in ability to detect it.  

In the example, alternative models of the discrete-
time dynamics of a mildly non-linear system are 
identified from simulated input-output records. 
They then generate output predictions, given the 
future input; input prediction is not considered. 
The input sequence }{u is generated from a white 
sequence }{w , uniformly distributed over (-0.25, 
0.75), by filtering by 

twtutu +−= 195.0  (1)      (1) 

where the subscripts denote time. For simplicity, 
the system is single-input, single-output and 
deviates from linear, time-invariant, first-order 
dynamics only by one non-linear term. The input 
is related to the noise-free output sequence }{y′  
by 

111.01925.01 −′−+−′+−=′ tytutytuty  (2)  

Zero-mean, white, u.d. noise is added to }{y′ . 
The sample mean-square signal-to-noise ratio is 
100 so that noise does not obscure the effects of 
systematic modelling error; the comparisons 
below change little for SNR down to 10 or less. 

2.2.  Model identification 

Records ( ) 400,...,2,1  ,, =ttytu  are generated 
(Figure 1), having discarded 100 pairs to remove 
the influence of the (zero) initial conditions.  

0 50 100 150 200 250 300 350 400
-10

-5

0

5

10

15

20

25

30

35

40

Time

In
pu

t, 
ou

tp
ut

--

 
Figure 1.  Input-output records for example: full 

line input, broken line output 

The two linear-in-parameters models 
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are identified from the first 300 input-output pairs 
by extended least squares (which can be 
generalized for estimation of time-varying 
parameters: see later). The structured noise model 
cvt vt− +1 , with }{v  white and zero-mean, 

covers structure introduced by a and put−1  as 

the model is rewritten from output-error to 

equation-error form. Estimates pbaba ˆ,ˆ,ˆor    ˆ,ˆ  

give one-step output predictions { }ŷ  from 
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for t=301,..., 400. Figure 2 shows the large 
difference in prediction performance between 
linear model (1) and non-linear model (2). 
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Figure 2.  One-step predictions of output: full 

line output,  --- model (1), +++ model (2) 

The smooth non-linearity put yt− −1 1  increases 

the positive peaks. Model (1), although identified 
from records containing two large peaks and 
several smaller ones, tracks the peaks near times 
360 and 385 poorly and suffers bias elsewhere. 
Model (2) predicts well. 

The poor performance of model (1) is not 
surprising and model structure (2) would be 
discovered by a thorough investigation (at this 
high SNR), but the non-linear term has small 
enough effects on some common diagnostics 
available at time 300 to risk being overlooked if 
only those diagnostics are used. For instance, the 
sample root-mean-square residual is less than 
17% higher for model (1) than for model (2); the 



mean-square residuals are only 1.65% and 1.21% 
of the output variance respectively; and the 
estimated s.d.’s of cba ˆ,ˆ,ˆ , 0.0083, 0.1011, 0.0595 
for model (1) and 0.0089, 0.1057, 0.0598 for 
model (2), fail to detect any difference. The 
residual autocorrelation functions, Figure 3, are 
more informative but would be less so at lower 
SNR. 

0 2 4 6 8 10 12
-0.2

0

0.2

0.4

0.6

0.8

1

Lag

A
ut

oc
or

re
la

tio
n

 
Figure 3.  Sample autocorrelations of residual 

sequence: broken line model (1), full line model 
(2). Two-standard-deviation lines also shown. 

There are better detectors of systematic error. One 
is simulation-mode one-step prediction error over 
the whole prior record, Figure 4. It uses predicted 
output on the right-hand side of (3) rather than the 
observed value used during parameter estimation. 
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Figure 4.  Simulation-mode one-step predictions: 

full line output,  --- model (1), +++ model (2). 
The predictions from model (2) are virtually 

indistinguishable from the actual output. 

The prediction error in Figure 4 clearly reveals 
the weakness of model (1) and its nature gives 
some idea of what is wrong with the model. The 
trouble can also be revealed by modelling one or 
more parameters as time-varying, e.g. as random 
walks (Norton and Chanat, 2003). A parameter-
estimation version of optimal smoothing (Norton, 

1975) yields parameter estimates which, at every 
point in time, utilise the information from later as 
well as earlier observations. Figure 5 compares 

b̂ , with b modelled as a random walk with r.m.s. 
increment 0.224, with the actual “coefficient” 
b pyt+ −1  of ut−1 . 
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 Figure 5.  Effective coefficient of ut −1 (broken 

line) and time-varying estimate b̂  (full line) 

Viewed as an output-dependent gain applied to 

the input, b̂  gives a clear picture of the nature 
and effect of the non-linearity. Alternatively, a 
time-varying estimate â  of the coefficient of 
yt−1  correlates fairly well with a put− −1 , but 

the more rapid variations of the input are followed 
less well by â . 

To summarise, omission of a well behaved and 
quite small non-linearity may render a predictor 
useless yet affect common diagnostics of model 
performance so little as to escape detection. 
Better-chosen diagnostics, such as simulation-
mode prediction error over the whole previous 
record or estimates of selected parameters 
represented as time-varying, are much more 
effective.  

3. OPTIMAL PREDICTION-BASED 
DECISION-MAKING? 

3.1.  Motivation 

 Decision-making based on uncertain prediction, 
and according to a single criterion, can be posed 
as a mathematical optimisation problem (Raiffa, 
1968). A solution amounts to automated decision-
making, long recognised as impracticable for 
complicated systems (Holling, 1978, p.119 and 
refs.). An attempt to pose and solve a decision-
optimisation problem may be frustrated by 
irreducibility of the decision objective to a simple 
criterion, inability to provide quantified 
uncertainties for a predictive model and the 



measurements feeding it, or failure to gain 
stakeholders’ trust. Even so, the attempt may 
yield insight into what model predictions can do 
for decision-making, and what would make 
decision-making more objective and its risks 
clearer. In particular, a mathematical formulation 
of the problem clarifies the roles of prior 
information (including uncertainty specification), 
measurements and model. A more immediate 
reason for another look at decision theory is the 
increasing computational feasibility of 
implementing its fundamental operations of 
Bayesian uncertainty-updating and associated 
optimisation under uncertainty, by Monte Carlo 
methods. 

It is assumed that prediction for decision-making 
supplies uncertain values of either the outcomes 
of alternative decisions or, less directly, variables 
affecting the outcomes. A scalar loss function 
measures the outcomes. The optimal decision 
minimises the risk, defined as expected loss, 
averaged over the prediction uncertainty. 
Prediction and loss evaluation require running of 
a model. In the simplest cases this might be an 
analysable state-space model but in 
environmental applications it will usually be a 
digital simulation. 

3.2.  Description of uncertainty; pdf tails and 
bounds 

A framework for considering uncertainty in the 
model and its predictions must be chosen. A 
Bayes probabilistic framework is reasonably 
broad yet can be specialised. In it, the uncertain 
predictor parameters are characterised by their 
joint probability density function (pdf). All other 
uncertain items influencing the prediction (e.g. 
unmeasured disturbances) are also described by 
their pdfs. It may seem unrealistic to assume that 
a pdf is available for every uncertain item 
affecting the prediction, as prior experience or 
scientific knowledge of some items may be very 
limited. However, a Bayes framework can 
accommodate some types of very limited 
knowledge; in particular, if only the range of an 
item is known, it defines the support but not the 
shape of the pdf. If all contributing items have 
known, finite support, Bayes estimation yields 
bounds on the prediction. Bounds on predicted 
outcomes may be enough to rank costs and permit 
a decision. This is so, for instance, if the cost is 
monotonic over disjoint ranges of each outcome. 
Bounds also match worst-case cost criteria, as 
discussed in Section 5. 

When little is known of the pdf of an uncertain 
quantity, reluctance to assume a finite range, on 
grounds of ignorance of extreme behaviour, 
would be understandable. The choice is between 

uncertain estimates of pdf tails (or cumulative 
probabilities of being in a tail) and an imprecise 
range. Unconvincing assumptions about pdf tail 
shapes can be avoided by adopting a tentative 
range, encompassing all previous experience, and 
accepting the unknown probability that a sample 
will fall outside it. The assumed range may be 
revised if its consequences turn out to be 
implausible. It is easier to assess the credibility of 
this sort of uncertain quantile, by reference to the 
observed extremes in the limited historical record, 
than that of an assumption about the shape of 
unbounded pdf tails. This is particularly so when 
extremes are predominantly due to few enough 
factors for an appeal to the Central Limit 
Theorem to be unwarranted. 

Everday, informal human decision-making tends 
to binary categorisation (“likely” and  “unlikely”), 
treating an extreme event as ignorable until its 
perceived risk (combining likelihood of 
occurrence and seriousness of consequences) 
becomes high enough. It is also notable that 
assumed ranges of uncertain quantities, with the 
risks of exceeding them often unknown but 
deemed acceptable, are used very effectively in 
much of engineering design, in preference to 
assuming pdf tail shapes. Consideration of the 
probabilities of extreme behaviour is avoided by 
executing toleranced, worst-case design so that 
the system will not be close to the specified 
performance boundaries for any combination of 
component parameter values within specified 
ranges. With proper monitoring of manufacturing 
tolerances and checking of subsystems (“marginal 
testing” in electronic design, testing to failure in 
mechanical engineering), this process can produce 
highly reliable systems. Environmental decision-
makers have much less control and much poorer 
information, but can benefit from knowing, at 
least roughly, how the extremes of predicted 
behaviour, over given ranges of the contributing 
influences and with unknown but small risks of 
exceeding them, compare with the boundaries of 
acceptable outcomes. That is, judgements and 
actions may be facilitated by bounded-uncertainty 
predictions. 

There are other reasons for not worrying too 
much, in Bayesian decision-making, about where 
to truncate a pdf when the probability thus 
excluded is unknown or only upper-bounded,. 
First, the optimal decision nominally minimises 
average loss, weighting extreme outcomes with 
their small probability densities and large losses. 
In practice, a decision-maker simply wants to 
avoid any behaviour beyond some fairly well 
defined boundaries. The transition from 
acceptable to unacceptable is often quite sharp, so 
an optimisation over the truncated, “likely” range, 



together with separate exploration of what range 
of circumstances will keep the outcome 
acceptable under each decision, seems preferable 
to a once-and-for-all optimisation which 
integrates over regions where the probability 
density is low but uncertain and the cost high but 
fairly arbitrary. Second, the ensemble of 
outcomes may itself be very uncertain for various 
reasons: the system has no close comparators, so 
the ensemble of its behaviour is guessed from its 
limited observed past; the predictions extrapolate 
into regions of state space where the model is 
untested; the model is wrong in some respect 
which has not yet clashed with observation; or the 
forcing of the system is inhomogeneous in time or 
space, with isolated large shocks. Extremes not 
observed so far still cannot be excluded. It is a 
scientific truism that model “validation” is only 
failure to falsify it. Similarly, a prediction-based 
decision cannot be justified, but only not 
demonstrably unjustified.  

3.3.  Prediction in Bayes framework 

Returning to Bayesian prediction-guided 
decision-making, assume that by one means or 
another, prior pdfs, perhaps truncated, have been 
arrived at for all items (state variables, model 
parameters and unknown forcing) influencing the 
future value of a scalar system output. At time t 
prior knowledge and measurements tX  have 

yielded a pdf )|( tXtp θ  for the state and 

parameters tθ  of a predictor model 

)( ttkh
kt

y θ=
+

 (5)  

for the scalar output yt k+ . Analytical derivation 
of the density estimate (Tay and Wallis, 2000) 
p yt k X t p htk t X t( | ) ( ( )| )+ ≡ θ  is generally not 

feasible even if the underlying state-space model 
is linear in state and parameters and )|( tXtp θ  
is Gaussian, for two reasons: products of state 
variables and parameters appear, and recursion of 
a linear state equation over k time steps to give  a 
k-step prediction  produces terms of total degree k 
in the parameters. Linearity in the parameters can 
be retained by parameterising and identifying the 
linear predictor model directly rather than through 
a state-space model, but easy interpretation of the 
parameters (e.g. as rate constants) is thereby lost. 
Also, complicated correlation, not necessarily 
well described by a covariance, then exists among 
the k-step predictor parameters.  

As an alternative to analytical derivation, Monte 
Carlo numerical approximation of )|( tXktyp +  

has the attraction that )( ttkh θ  need not be 

written explicitly. The model is run once for each 
of a large set of samples from )|( tXtp θ , 

producing a sample set from )|)(( tXttkhp θ  

large enough for the local density of samples to 
approximate the probability density adequately. 
Unknown forcing with known distribution can be 
included by applying a sample of the forcing to 
each sample. Time-structured forcing such as 
rainfall would require an auxiliary model, but the 
forcing need not be additive and the technique 
does not rely on linearity or on any special 
properties of the pdfs. 

Pdf prediction by propagating samples is well 
matched to Monte Carlo Bayes estimation 
of )|( tXtp θ . For i=1,2,...,t, a large set of 

samples of iθ  is alternately time-updated, using 
the model to propagate them from time i-1 to time 
i, and observation-updated, using measurements 
at time i to evaluate the observation likelihood at 
time i for each sample. A sample θi−1  from 

p i Xi( | )θ − −1 1  is time-updated by substitution 

into the state equation or, if the model is 
complicated, executing a simulation run over one 
time step. The time intervals need not be uniform; 
the final time update is the prediction from t to 
t+k. Such Monte Carlo Bayesian state-estimation 
schemes have received a great deal of attention in 
the past decade (Doucet, de Freitas and Gordon, 
2001), because of their much greater flexibility 
than classical state estimators in applications such 
as target-tracking (Gordon, Salmond and Smith, 
1992), where non-linearity, poor observability 
and ambiguity may make Kalman-filter trackers 
cumbersome and unreliable. Their ability to 
handle any given pdfs for initial state, forcing and 
observation error is also valuable. Propagation of 
the state pdf rather than the mean and covariance 
allows asymmetry and ambiguity (multiple 
maxima) to be registered. Derivation of marginal 
densities and quantiles is straightforward.  

These state estimators, regrettably named 
“particle filters”, incorporate the observation 
likelihoods through Bayes’ rule, multiplying the 
equal probability masses of the time-updated 
“particles” by the likelihoods, then resampling 
according to the likelihoods, i.e. importance 
resampling (Smith and Gelfand, 1992), to obtain a 
new sample set for the next time update. The 
danger is that when new observations are 
processed, the great majority of samples have low 
associated likelihoods. They then have low 
probability of appearing in the resampled set, 
which may soon collapse to a single sample. This 



is particularly a danger when new observations 
indicate a change from what was predicted, 
precisely when it is crucial that the pdf should 
track the new conditions. Much effort has gone 
into ways of avoiding collapse, for instance by  
introducing jitter, using stratified sampling or 
generating new samples when inadequate 
coverage is detected (Carpenter, Clifford and 
Fearnhead, 1999; Veres and Norton, 2001). 

3.4.  Minimum-risk decision 

Once found,  p yt k X t( | )+  forms the basis for an 

action ))|(( tXktyp
t

a +  which together with 

output kty + determines the loss via a loss 

function L at yt k( , )+ . Selection of a loss 

function matching the decision-maker’s concerns 
may be difficult or impossible (Smith, 1988), but 
let us assume that at least some preferences about 
the outcome can be encapsulated in one. The loss 
function generally depends directly on ta , since 
actions incur immediate costs, as well as 
indirectly on ta  through its influence on kty + . 

The decision-maker aims to choose, from a set A  

of possible actions, the one ∗
t

â  which minimises 

the expected loss (cost minus benefit) over all 
possible outcomes, i.e. the risk  

.)|(),(

]|),([)|(ˆ

ktdytXktypktytaL

tXktytaLEtXtaR

+++∫
∞

∞−
=

+≡

 (6) 

Use of samples to represent the pdf turns the 
integration into straightforward summation. To 
find the best action  

)|(ˆminarg)(ˆ tXtaR
a

tX
t

a
A∈

=∗  (7) 

the risk must be evaluated at a number of possible 
values of ta . If A  consists of a few (perhaps 
only two) discrete alternatives, the minimisation 
is trivial. If on the other hand a continuous range 
of actions is available, numerical search for the 
optimum is required. For broad classes of loss 
functions and pdf shapes, the optimum is at a 
readily found point such as the conditional mean 
E yt k X t[ | ]+ , as noted long ago in optimal 

estimation theory (Deutsch, 1965). 

3.5. What computation is required?  

The relative simplicity of the expression for 
)|(ˆ tXtaR  conceals a variety of possible 

situations and corresponding computational loads 
in environmental applications (which do not 
necessarily arise in other areas, such as economics 
and finance, where minimum-risk decision theory 
has been considered). Let us look for especially 
easy cases. One is where the uncertain kty +  

does not depend on ta  but does affect the cost 
and/or benefit of the outcome. For example, 

kty +  might be rainfall in the period t to t+k, 

affecting water availability beyond the otherwise 
known consequences of an irrigation water 
allocation ta . Here there are two separate 

models, probabilistic for kty +  and deterministic 

for the outcome of ta , so evaluation of 

L at yt k( , )+  requires a single Bayesian pdf 

prediction and as many deterministic predictions 
as possible actions. Optimisation of risk 

)|(ˆ tXtaR  does not involve repetition of the pdf 

prediction. Another example is where kty +  is a 

list of future prices, affected by market 
uncertainties, applied to the crop (treated as 
certain) resulting from a given land-use choice 

ta , for stated climatic conditions. However, this 
relative simplicity is easily lost. In the first 
example, irrigation water allocation probably 
depends in fact on flow and hence rainfall,  by 
policy. In the second, the crop may affect the 
price distribution. If so, p yt k X t( | )+  becomes 

p yt k X t at( | , )+  and there are as many pdf  

predictions to carry out as candidate actions. 

Another situation where only a single pdf 
prediction seems to be needed is where ta  is an 
advance commitment from a resource (say 
investment or irrigation water) to satisfy a future 
demand with a known payback, and kty +  is the 

aggregate of uncertain competing demands on the 
same resource. The loss function L at yt k( , )+  is 

simply the sum of the (sign-inverted) certain 
benefit )( taktz +  of satisfying the first demand 

and the uncertain benefit of satisfying the others, 
subject to ta . The catch is that in practice the 
benefit from the forward commitment may also 
have to be predicted under uncertainty. It would 
be predicted as a pdf ),,|( ktWtXtaktzp ++  

where Wt k+  is the set of uncertain conditions 

determining the benefit of commitment ta  of 
resource for use from time t+k . There are then 



two types of pdf prediction to make, a single one 
for )|( tXktyp +  and as many as possible 

actions for ),,|( ktWtXtaktzp ++ . We have to 

integrate over both to find the risk )|(ˆ tXtaR . 

The next complication arises from treating 
)|( tXktyp +  as if it were correct in finding the 

optimal action ∗
ta . The risk )|(ˆ tXtaR  found 

by (6) has a circumflex as a reminder that it only 
approximates the true risk  

.)(),(

)],([)(

ktdyktyfktytaL

ktytaLEtaR

+++∫
∞

∞−
=

+≡

 (8) 

which would result from the actual pdf )( ktyf + . 

The actual pdf would lead to an optimal action 

at
o

a
R at at X t=

∈
≠ ∗arg min ( ) ( )

A
 (9) 

Proper design of a robust, Bayesian, prediction-
based, decision-optimising procedure would 
examine the sensitivity of the predicted risk 
function )|(ˆ tXtaR  to error in the pdf 

)|( tXktyp + . The procedure is robust so long 

as the information tX  determines )|( tXktyp +  

well enough for (7) to yield the same “optimal” 
action (within acceptable bounds, if the choice is 
not discrete) as would be obtained with perfect 
knowledge at time t of )( ktyf + . 

It seems that optimal decision theory may involve 
heavy computing even if the decision problem 
can be suitably formalised and advantage is taken 
of modern Monte Carlo techniques for 
propagating uncertainty. The next section 
describes a more heuristic approach to predictive 
decision-making. It was developed for automatic 
control in the process industries, which also has to 
contend with poor models and uncertainty about 
future disturbances and ambient conditions. 

4. SEQUENTIAL DECISION-MAKING 
WITH UNANALYSED UNCERTAINTY  

4.1.  Predictive decision-making with feedback  

The Bayesian scheme outlined above takes 
uncertainty explicitly into account but depends on 
a detailed uncertainty prescription and on Monte 
Carlo implementation of state and parameter 
estimation to obtain )|( tXtp θ , prediction of 

)|( tXktyp +  and integration of  probability-

weighted loss over yt k+ . For once-and-for-all 
decisions and long prediction intervals, the effects 
of uncertainty should clearly be analysed as fully 
as possible. However, if an initial decision can be 
followed by periodic corrections as the 
consequences unfold, the problem becomes one 
of feedback control, with much reduced need for 
uncertainty analysis. A crucial property of 
feedback is that, with proper design, it can reduce 
the sensitivity of overall system behaviour to 
variations or errors in the system response and to 
disturbances. For linear systems, it is easy to 
show that if the controller gain can be increased 
enough to make the loop gain high, there are nice 
consequences for robustness: overall (closed-
loop) gain from input disturbances to output 
becomes insensitive to the input-output open-loop 
(forward-path, compensator plus plant) gain, 
ultimately tending to 1/feedback gain; and the 
effects of output disturbances are reduced by a 
factor equal to the loop gain. 

The snag is that most linear systems become 
unstable as the feeedback gain is increased. Well 
before the onset of instability, the response to 
disturbances is poorly damped. The beneficial 
effects of feedback can be retained if the loop 
gain is high over the frequency range containing 
most of the disturbance power, yet low enough 
over the frequency range giving greatest 
proximity to instability; this is a primary aim of 
control system design. For non-linear systems, 
stability is generally no longer determined 
entirely by the system parameters but depends on 
the input and state. However, successful 
application of feedback around a non-linear 
system may reduce the effect of non-linearity by 
reducing the variation of the state variables. 

The prospect of obtaining the benefits of feedback 
in non-engineering applications of predictive 
models justifies a look at an automatic control 
technique which might contribute ideas for 
sequential decision-making. 

4. 2.  Model predictive control 

Model predictive control (MPC) (Garcia et al., 
1989; Morari and Zafiriou, 1989; Soeterboek, 
1992; Maciejowski, 2002) is a flexible approach 
to robust control in the face of modelling errors 
and unpredictable disturbances. It has been 
developed largely in industry and is appealing for 
its heuristic nature and proven effectiveness in 
difficult cases. It originated in the late 1970’s in 
the process industries, where the processes are 
typically hard to model, having distributed, non-
linear and stiff dynamics, and the control system 
must cope with rapidly varying input conditions. 
Moreover, control actions and state variables are 
heavily constrained by physical limits (e.g. valve 



opening and closing rates, pump speed, heater 
power), safety considerations (e.g. boiler level, 
reactor temperature and pressure) and product 
quality. Analytical control design methods are 
unable to deal with this combination of 
difficulties, so the basis of MPC is constrained 
numerical optimisation using a predictive model 
of the plant. At regular time intervals, a sequence 
of future control actions is optimised 
deterministically, to match as closely as possible a 
desired output trajectory. For example, the 
integral of the squared error between the 
controlled output and desired trajectory might be 
minimized, over an interval from the minimum 
cost horizon up to the prediction horizon. Most 
MPC schemes use linear models and quadratic 
optimisation criteria, so that the optimisation can 
be manipulated into a standard form for which 
efficient solvers exist: LP, QP, quadratically 
constrained QP or linear matrix inequalities 
(Boyd et al., 1994). 

The repetitive on-line use of  a model allows 
adaptation to disturbances, measured input 
changes, evolving control priorities and changes 
in the system itself. The model may be updated, 
so that the overall scheme combines model 
identification and control synthesis. The 
combination of model and controller which 
jointly optimizes a stochastic control performance 
criterion, the dual controller, can be synthesised 
only in very simple special cases, so instead the 
scheme uses the generally suboptimal 
combination of the “best” model according to a 
fitting criterion and “optimal” control obtained by 
treating the model as true. 

 The second important feature of MPC is 
receding-horizon control, in which the optimal 
control sequence is recomputed periodically, at 
intervals shorter than that covered by the 
optimisation. In other words, only the initial part 
of each optimal sequence is actually applied. The 
reason is to maintain flexibility in the face of 
unforeseen changes, rather than relying on a 
complete precomputed control sequence which 
may soon be out of date. At every recomputation, 
the most recent measurement of the output 
provides some feedback.  

The prediction horizon is a compromise between 
speed of computation, needing a short horizon, 
and robustness (low sensitivity of stability and 
performance to variations in system and 
environment) (Bemporad and Morari, 1999), 
which increases as the horizon is lengthened. 
Indeed, stability can be ensured, in principle, by 
meeting a terminal constraint on state at the end 
of an infinite prediction horizon (Maciejowski, 
2002). It turns out that speed can be improved at 
low cost in performance by constraining the 

control sequence to be constant beyond some 
point before the prediction horizon, optimising 
the sequence only up to this control horizon. It is 
intuitively obvious that the shorter the control 
horizon, the greater the control effort up to it. 
Taking strong control action over the early part of 
the sequence to approach the desired trajectory 
leaves later control (in updated control sequences) 
more scope for dealing with later disturbances or 
changes in the system or the control objective. 

What, if anything, does the MPC approach tell us 
that has implications for decision-making in other 
fields? Broadly, 

(1) feedback can mitigate the need for uncertainty 
to be considered, by making the controlled system 
less sensitive to disturbances and model error;  

(2) receding-horizon control, revising the control 
at intervals much shorter than the prediction 
horizon, takes a long-term view yet incorporates 
feedback; 

(3) designing the control policy as if it were to 
cover an interval well beyond the next revision 
makes the control more circumspect; 

(4) pretending that the control action will be 
constant after some time well short of the 
prediction horizon increases the short-term action, 
which if successful brings the system closer to the 
desired condition and leaves more scope for later 
action to meet unforeseen changes.  

4.3. Implications for sequential decision-
making? 

There are obvious limits to how far techniques 
from control engineering can provide helpful 
analogies for other fields where regulation or 
“servo control” to achieve a desired change is 
required, such as environmental management. 
The existence of stakeholder groups, regulatory 
frameworks, political agendas, budgetary 
constraints, conflicting interests and much larger 
spatial and time scales will prevent most such 
problems from being formulated or tackled as 
tidily as most control-engineering problems. The 
decision-maker may well have severely restricted 
ability to act on the system. In particular, regular 
monitoring and revision of the control actions 
may be too expensive or unreliable, or 
impracticable for other reasons. Resistance to 
trying a scheme developed in other circumstances 
would be natural, although simulation studies 
may be able to provide some confidence in the 
applicability of MPC-style sequential control in 
new areas. Other potential difficulties, mostly 
faced by any decision-making strategy, include 
formulation of a performance criterion and 
constraints suitable for numerical optimisation, 
especially when the outcome has a spatial 



dimension; unintended, unmodelled and 
unacceptable consequences of fierce control 
action due to high feedback gain; non-stationarity 
(e.g. seasonal or other climate-driven behaviour) 
which must be taken into account in the control 
optimisation; invalidation of the design rules 
which have grown up for MPC by non-linearities 
which show up as severe deviations from the 
model; incomplete state observability and/or 
reachability resulting in unacceptable behaviour 
of internal variables; delay between output and 
control action hindering or preventing 
stabilisation of the system, let alone good control; 
practical difficulties in maintaining control 
consistently at suitable update intervals and over a 
long enough period; and moving targets as social, 
environmental  and economic priorities change. 

On the other hand, some of the features listed 
above are already present in informal, common-
sense management decision-making. They have 
made MPC commercially successful in a variety 
of applications, now beginning to extend into 
aerospace. The ever-increasing availability of 
numerical models which can be run in many trials 
of alternative decisions invites more systematic, 
sequential optimisation and control in non-
engineering problems with features (such as non-
linearity, distributedness, poor modelling, time-
varying ambient conditions) addressed by MPC. 

 

5.  SET-MEMBERSHIP PREDICTION 

5.1.  Bounded-norm setting for prediction 

Up to this point prediction has been model-based 
and thus dependent on identification of a suitable 
model structure and parameter values. If 
prediction is the sole motive for modelling, an 
alternative exists: set-membership prediction 
(Novara and Milanese, 2001b; Milanese and 
Novara, 2002). It is of interest for two reasons: it 
does not rely on choice of a specific model 
structure, sidestepping the identification problem, 
and it formulates the prediction problem in a 
bounded-error, worst-case-optimal context quite 
different from the probabilistic formulation in 
Section 3 or the deterministic, feedback-oriented 
approach of Section 4. 

The problem is prediction at time t of scalar 
output yt k+  from noise-affected measurements 

tiii
o
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of the output and explanatory variable vector 

φ ∈ ℜn  (e.g. earlier input and output samples). 
The noise is  known only to be bounded: 
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That is, the predictor aims to minimise the largest 
error over all feasible tφ  and over the feasible set 

Ft  of all f’s compatible with the specified bounds 
and the observations to date. 

5.2.  Noise-bound specification and almost-
optimal prediction algorithm 

Although the functional form of )(ˆ φf  need not 
be identified, values must be specified for the 
bounds γ δ ε, , . Their values can themselves be 
bounded, without prior information, through the 
conditions for the feasible set Ft  to be non-
empty, i.e. for there to be no clash between the 
values of γ δ ε, ,  and the observations of y and 
φ . Necessary and sufficient conditions, 
respectively, are (Milanese and Novara, 2003) 
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By default, the smallest γ  leaving Ft  non-empty 

can be found for trial values of δ ε, , thus 
defining a surface in ( , , )γ δ ε  space above which 
any point is valid. In practice, the output-noise 



bound ε  may be obtainable from knowledge of 
the measurement process, or the gradient bound 
γ  estimated from an approximate model. The 
two-dimensional feasibility boundary in the other 
two bound values can then be explored and a 
point a little above it selected; application 
examples seem to indicate that the choice is not 
usually critical. 

Once γ δ ε, ,  are chosen, a prediction algorithm 

based on Ft  has to be devised. A general worst-
case optimal algorithm is not available, but it can 
be shown (Novara and Milanese, 2001a) that the 

simple algorithm $ ( ) ( ) ( ) /f t
o f t

o f t
oφ φ φ= +

( )
2  

is almost optimal, with prediction error bounded 

by γδ + +( ( ) ( )) /
) (
f t

o f t
oφ φ 2 . The algorithm has 

been applied to the Wolf sunspot series (Novara 
and Milanese, 2001b) and a river daily flow series 
(Milanese and Novara, 2002), giving maximum 
errors better than, and r.m.s. errors closely 
comparable to, a wide selection of alternative 
predictors including some using neural networks 
and local linear approximation. 

This approach has potential where measurement 
uncertainties and model-output error are best 
characterised by bounds, non-linearities are 
smooth overall and can be bounded, a parametric 
model is hard to identify and a conservative, 
worst-case criterion for predictor performance is 
appropriate. 

 

6.  CONCLUSIONS 

The example in Section 2 illustrated the 
importance of selecting suitable diagnostics of 
model quality. The following three sections 
outlined contrasting approaches to prediction as 
an aid to decision-making, making very different 
demands on the prediction model.  

Classical, probabilistic Bayesian optimal decision 
theory offers a standard framework into which 
prediction and optimisation under uncertainty fit 
neatly, without unduly limiting the form of the 
model. On the other hand, it demands a large 
amount of prior probabilistic information, 
imposes heavy (though increasingly tolerable) 
computational load and assumes that a 
satisfactory cost function can be formulated, a 
vain hope for many applications. 

Model predictive control exploits the ability of 
feedback, in the shape of regular revision of the 
prediction and optimisation, to confer robustness 
in the face of modelling error and to avoid the 
need for detailed characterisation of uncertainty. 
It caters for heavily constrained problems and 

may be able to achieve computational efficiency 
by keeping the optimisation in a standard form, 
such as quadratic programming. Although it is 
beginning to find application outside the process 
industries where it was developed, it has not yet 
been tried in environmental applications. Here the 
need for the model structure to fit the optimisation 
algorithm may be a significant limitation, as 
strong non-linearity, spatial distributedness and 
conflicting objectives may raise new difficulties. 

The recently developed set-membership 
prediction technique offers worst-case, near-
optimal prediction with very modest demands on 
uncertainty specification and model properties. 
Initial trials, which include river flow prediction, 
have shown it to perform well compared with a 
wide range of alternatives. More experience of its 
capabilities in larger problems is needed. 

Finally, let us not lose sight of the other 
considerations in selecting and testing a 
prediction model. In the three approaches above, 
prediction and optimisation are the aims. For 
these purposes, the model should be economical 
and able to satisfy the assumptions of the 
prediction and optimisation techniques. However, 
effective decision-making also depends critically 
on good insight into the system, and a good 
prediction model may be poor at yielding insight. 
Familiarity, ease of interpretation, ease of testing 
and  degree of detail may all be more important 
for the latter than economy or compatibility with 
standard assumptions. 
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