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Abstract: Streamflow hydrographs represent the integrated effects of hydrologic processes operating over a 
wide range of spatial and temporal scales.  Constant-parameter transfer function models have been shown to 
represent the relationship between effective rainfall and streamflow adequately in many cases, but are limited 
in ability to reveal detailed behaviour by their aggregation of watershed dynamics in a linear, time-invariant 
model.  One way of examining details of catchment dynamics while retaining a simple model structure is to 
fit linear but time-varying models.  We illustrate this approach applied to seven years’ daily rainfall and 
streamflow data from a 10 km2 forested watershed in Virginia.  Low-order models with an output-offset term 
(modeled as zero, constant or time-varying) are fitted by extended least squares estimation with optimal 
smoothing, treating time-varying model parameters as random walks.  The extent of time variation is 
restricted to keep the ratio of mean-squared one-step-prediction error to mean-squared residual close to unity, 
so that parameter updates track changes in watershed input-output dynamics rather than noise in the record.  
All models turn out to have one dominant pole, indicating that with the slowest components of the flow 
record accounted for by an offset, watershed response can be well modeled as a single, linear reservoir with 
varying gain and time constant.  The reservoir time constant varies fairly smoothly between two and thirteen 
days.  Patterns in the evolution of the time constant and steady-state gain correspond to physically 
interpretable events in the hydrologic record, including snow accumulation and melt and extreme summer 
storms.  Models of the sort presented here have potential applications in baseflow filtering, in revealing 
subtle changes in hydrologic response, and in identifying anomalies in the records. 
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1. INTRODUCTION 

Runoff processes in forested watersheds operate 
over a wide range of temporal scales.  Transfer 
function models are an empirical approach for 
describing these complex dynamics in a manner 
consistent with the information content in rainfall-
runoff records (Jakeman et al., 1990; Jakeman and 
Hornberger, 1993).  The results frequently suggest 
that runoff can be related to effective precipitation 
with low-order, constant-parameter models that are 
mathematically equivalent to one or two linear 
reservoirs connected in series or parallel.  This 
representation may lend insight into underlying 
physical processes (e.g., Jakeman et al., 1993), and 
permits the dynamic response characteristics of 
different catchments to be compared (Post and 
Jakeman, 1996).  However, even in cases where 
catchment dynamics can be summarized with low-
order models, there is no physical reason to expect 
the underlying processes to be stationary.  One 

approach to overcoming this potential limitation of 
constant-parameter models while retaining a 
simple model structure is to fit linear but time-
varying models.  Time-varying models derived by 
fixed-interval smoothing have been used to 
characterize nonstationarity in catchment response 
and suggest refinements to constant-parameter 
models (Norton, 1975; 1976; Young and Beven, 
1991; Young and Beven, 1994; Beven, 2001).  In 
this paper we present a similarly motivated 
technique, using extended least squares with 
optimal smoothing, applied to a model structure 
which includes an output-offset term. This term, 
which may also be time-varying, allows for 
behaviour not within the scope of the rest of the 
low-order model, such as baseflow. The overall 
aim is to characterize and interpret the response of 
a small forested catchment, on daily and longer 
time scales. 



2. METHODS 

2.1. Study Area 

The Staunton River drains a 10.5 km2 watershed 
on the eastern flank of the Blue Ridge in central 
Virginia, in the mid-Atlantic region of the eastern 
US.  The stream gauge latitude and longitude are 
38° 26’ 42” and 78° 22’ 38”, and the gauge 
elevation is 480 m.  Mean annual precipitation for 
water years 1993-1999 was 1770 mm, with 
precipitation more or less evenly distributed over 
the year.  Snow cover in the watershed is 
discontinuous during the winter months, with 
maximum annual snow depths ranging from 20 cm 
to 120 cm over the study period.  The watershed is 
fairly steep, with a divide-to-outlet gradient of 
29%, and completely forested, primarily with 
second-to-third-growth mixed hardwoods.  Mean 
annual runoff for water years 1993-1999 was 763 
mm, with roughly 65 percent occurring between 
November and April. 

2.2. Modeling Approach 

A transfer function model with time-varying 
parameters was fitted to a daily record of rainfall 
and streamflow from October 1, 1992 to August 
16, 1999 (Figure 1a).  Because time-varying 
models cannot be applied in a predictive sense to 
data sets other than those with which they were 
formulated, the entire period of record was used as 
the calibration period; that is, there was no model 
validation period.  The model in output-error form 
is 

 

where y(t) represents streamflow at time t, u(t) 
represents rainfall, e(t) is a zero-mean white noise 
sequence and d(t) is an offset. A(q-1), B(q-1), and 
C(q-1) are polynomials in the backshift operator, 
with A(q-1) and C(q-1) monic. In initial experiments 
A(q-1) and B(q-1) were of degree 3. This allows for 
some variation in the pure delay between rainfall 
and streamflow (as can be seen in records of 
individual storms) and identification of up to three 
linear storages in series or parallel, ensuring that 
no significant component is overlooked. 

The coefficients of A(q-1) and B(q-1) are modeled 
as random walks.  The extent of variation of each 
is tuned via the specified mean-square value of its 
forcing, minimizing the mean-squared residuals 
(MSR) while not allowing the ratio ρ of mean-
squared one-step prediction errors (MSPE) to 
MSR to rise far or rapidly from its constant-
parameter value of unity. This prevents excessive 

variation in the model parameter estimates due 
only to noise, which confers no predictive power, 
while allowing tracking of systematic variation in 
dynamics, which does improve predictive power. 
The coefficients of C(q-1) are estimated as 
constants so as to leave it to A(q-1), B(q-1) and d(t) 
to reflect as much as possible of the systematic 
behaviour. A time-invariant noise model in output-
error form would require C(q-1) to cancel variation 
in A(q-1) exactly, but that would introduce products 
of coefficients from A(q-1) and the constant noise-
model parameters into the equation-error form of 
the model, destroying the linearity required by 
extended least squares and optimal smoothing. The 
offset term was modeled as zero, constant, or time 
varying.  Model performance was measured by the 
ratio of the standard deviation of the model-output 
residuals to that of the observed output.  Details of 
the estimation algorithm may be found in Norton 
and Chanat (2003). 

Dominant modal components in the rainfall-runoff 
transfer function were identified by partial fraction 
decomposition of B(q-1)/A(q-1) and examination of 
each component.  In some cases complex 
conjugate poles with small and rapidly varying 
residues arose.  They have little predictive power 
and are driven by very-short-term features of the 
records which cannot be fitted by the remainder of 
the model. 

3. RESULTS 

Based on assessment of MSR and ratio ρ, the 
variances of the zero-mean, white noise sequences 
driving the variations of each parameter in A(q-1) 
and B(q-1) were tuned to 10-5 and 10-6 respectively. 
The offset term was driven by a sequence with 
variance 0.001 when not modeled as constant. 
Inclusion of a constant offset reduces the small 
mean of the residuals virtually to zero but its 
addition reduces statistical efficiency, increasing 
the standard deviation (s.d.) of the residuals and 
RMSE by about 1%.  Allowing the offset to vary 
reduces the ratio of RMSE to s.d. of flow from 
0.3023 to 0.2948; ρ is between 1.02 and 1.03 in all 
cases.  Only the model with the time-varying offset 
will be discussed hereafter.  
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Model steady-state gain (SSG), defined as (sum of 
coefficients in B(q-1))/(sum of coefficients in A(q-

1)), varied substantially but smoothly between 0.11 
and 0.53 mm/mm, with a mean of 0.27 mm/mm 
(Figure 1b).  Most of the model gain was 
contributed by a single dominant mode, with 
significant differences only evident for roughly the 
first 200 days of the record and between days 1200 
and 1700 (Figure 1b).  This suggests that with the 
slowest runoff component accounted for by an 
offset, catchment response is quite well modeled as 
a single, linear storage with smoothly varying gain  
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Figure 1.  Observed precipitation, flow, and periods with snow cover, modeled steady-state gain, time 
constant, and offset term, Staunton River, October 1, 1992 – August 16, 1999.  a) precipitation, flow, 

and periods with snow cover (horizontal bars); b) steady-state gain (SSG), SSG of dominant mode, and 
SSG using effective precipitation as input (dash-dot line); c) time constant (TC). Dash-dot line as in b); 

d) offset term. Dash-dot line as in b). 



and time constant.  The variation in the SSGs 
suggests a seasonal cycle, with the SSG higher in 
the winter months and lower in summer.  The 
extent of seasonal variation varies from year to 
year, with smallest differences in water years 
(WYs) 1995 and 1999.  A sharp peak punctuates 
this pattern at day 1440, coinciding with an 
exceptional rainfall event (Figure 1b). 

The time constant –1/ln(dominant pole) associated 
with the dominant pole varies between 2.2 and 
13.0 days, with a mean of 6.0 days (Figure 1c). 
The time constant varies more smoothly than the 
SSGs and does not exhibit the seasonal pattern.  
Prominent features include a distinct peak near day 
530 and local minima near days 1440 and 1930. 
The dominant time constant is notably lower when 
estimated using effective rainfall (Figure 1c). 

Thirty-two percent of the modeled flow volume is 
accounted for by the time-varying offset (Figure 
1d), which has a mean of 0.65 mm/day and a 
maximum of 1.57 mm/day. The offset is 
transiently negative near day 1440, but the use of 
effective rainfall removes this anomaly (Figure 
1d). 

4. DISCUSSION 

In periods of high SSG, a greater proportion of the 
rainfall ends up as streamflow.  This might be 
expected when the catchment is least able to store 
water; i.e. is relatively wet. The seasonal pattern in 
the SSG thus suggests variation in catchment 
wetness due to evapotranspiration and rainfall. The 
greatest seasonal variation in SSG might be 
expected in the years with the wettest winters.  
This tendency is evident from both inspection of 
the relative magnitude of the winter flows (Figure 
1a) and tabulation of relative winter precipitation 
(Table 1).  Seasonal differences in SSG are least 
pronounced in the driest winters (WYs 1995 and 
1999), and more pronounced in the wetter winters 
(e.g., WYs 1998 and 1994). 

The seasonal variation in SSG suggests an obvious 
modification of the model structure: inclusion of a 
nonlinear module to account for catchment 
wetness. To examine the effect of such a module, 
the total rainfall was processed using the nonlinear 

rainfall filter of the IHACRES model (e.g., 
Jakeman and Hornberger, 1993), with a catchment 
drying time constant of 10 days and temperature 
modulation factor of 2.0.  The resulting effective 
rainfall time series was used as input to the time-
varying model.  The net effect on model 
performance is a 1% reduction in RMSE, as a 
larger mean is removed from the residuals.  The 
resulting time series of model SSG shows 
appreciably less seasonality, although the 
remaining seasonal pattern suggests that further 
improvement could be achieved through fine-
tuning (Figure 1b).  The reduction in dominant 
time constant on using effective rainfall (Figure 
1c), also suggests that the influence of the slow 
soil-moisture dynamics is at least partly accounted 
for by the evapotranspiration loss module.  

The peak in model SSG near time step 1440 is 
associated with the heaviest precipitation event of 
the record: a 4-day period of 544 mm total 
precipitation in late summer, with nearly 400 mm 
on the last day.  It is likely that an event of this 
magnitude resulted in complete saturation of the 
watershed, with nearly all precipitation appearing 
as streamflow.  The resulting peak in SSG is 
therefore comparable in magnitude to those 
evident in the wettest winters. The peak in 
estimated SSG is inevitably spread out by the 
change-inhibiting effect of the specified values for 
mean-square changes of the model parameters; 
Weston and Norton (1997) offer an optimal-
smoothing-based technique specifically intended 
for detection and quantification of such isolated 
abrupt events. 

The dominant time constant of the response shows 
two prominent minima near days 1440 (the event 
discussed above) and 1950 (Figure 1c).  The 
second follows the second largest runoff event, in 
January 1998.  These minima are consistent with 
the expectation that in the heaviest events rain falls 
onto on a saturated catchment and follows the 
quickest pathways to the stream. 

Maxima in the time constant occur in periods of 
slowest runoff response.  One possible cause is 
storage of water in snowpack, followed by slow 
release during snowmelt.  The most prominent 

Table 1. Winter Precipitation and Snow Cover Index1 Over Study Period 

 Water Year 

 1993 1994 1995 1996 1997 1998 1999 

October-March Precipitation (mm) 864 888 663 914 765 1222 740 

Snow Cover Index (days-cm) 712 988 300 470 520 1620 235 
1Snow cover index = (Number of days with snow cover)x(Median depth of snow cover when present) 



maximum in the time constant occurs in the winter 
of WY 1994 (Figure 1c). To test whether this 
maximum is due to melting of an unusually heavy 
snowpack, a coarse index of snow cover was 
computed for each winter season. The number of 
days with snow cover was multiplied by the 
median snow depth over those days.  The results 
indicate that WY 1998 had by far the largest snow 
cover, followed by WYs 1994 and 1993 (Table 1).  
Water years 1993 and 1994 do have the highest 
winter time constants, but the effect of heavy snow 
cover is not so evident in the time constant for WY 
1998, although the time constant rises markedly in 
the few weeks around day 2000.  A likely 
explanation is that the specified mean-square 
values of the parameter changes inhibited rapid 
recovery of the model’s time constant from its 
minimum due to heavy rainfall in January 1998.  
Two other large rainfall events later that season 
may have also contributed to keeping the time 
constant low (Figure 1a). 

After these results were obtained, we discovered 
that the gauge on the Staunton River was not 
operating between days 959 and 1469 because of a 
major flood. Surrogate data, derived from 
regression relationships with nearby watersheds, 
had been inserted for this period.  Some features of 
the model results suggest effects of the 
substitution.  First, the interval during which the 
offset term is negative, indicating overestimation 
of flow by the input-output part of the model, 
coincides with the largest storm in the record, 
which occurs during the period of surrogate data 
(Figure 1d).  Secondly, the longest and most 
pronounced period when the SSGs of the entire 
model and the dominant mode differ substantially, 
indicating higher-than-first-order dynamics, is 
between roughly days 1200 and 1700, significantly 
overlapping the period of surrogate data (Figure 
1b). These results suggest that, in addition to being 
an interpretive tool, the time-varying model may 
be useful for identifying anomalies in the record. 

The question arises whether the modeled offset 
term can be used to identify “baseflow”, loosely 
defined as the component of the total flow due to 
the slowest, and usually unmodelled, components 
of the catchment rainfall-runoff dynamics.  More 
generally, the decomposition of total flow response 
into slower and quicker components invites 
comparison with two-compartment constant-
parameter models as produced by IHACRES.  
However, the estimated offset term also responds 
to any systematic undermodelling or mismodelling 
in the rest of the model, such as significantly too-
large or too-small values of the mean-square 
changes in the parameters or omitted influences 
which are not completely accommodated by the 

random-walk parameter representations, such as 
that of temperature on evapotranspiration loss.  

The flexibility of linear, low-order, time-varying 
models allows them to track, to a useful extent, 
complicated dynamics which are in fact both non-
linear and, being both distributed and subject to 
varying pure delay, infinite-order. The price paid 
for this richness of behaviour is that it makes 
decomposition into modal and offset components 
at any given instant non-unique; a change in 
relative tuning of the time variation of the various 
parameters and offset can alter the components for 
a given quality of fit. Separation of effects, e.g. 
into baseflow and faster rainfall-runoff relations, 
or into the effects of rainfall, evapotanspiration and 
snowmelt on runoff, thus depends on tuning by 
reference to what behaviour is known to be 
credible, and checking against known catchment. 
properties. Even then, a range of time-varying 
models (narrow and informative, if the tuning is 
done with care) may fit the catchment’s short-term 
behaviour.  By contrast, time-invariant, low-order, 
lumped, models, as used by IHACRES, cannot 
model complicated dynamics in detail but can 
successfully model average behaviour over 
sufficient periods and at suitable time scales for 
that behaviour to be uniquely defined and 
consistent.  

5. CONCLUSIONS 

Linear, time-varying models, obtained by extended 
least squares estimation and optimal smoothing, 
can be effective in refining model structure (e.g. 
revealing dependences of parameters on variables), 
revealing changes in dynamics and identifying 
anomalies in records.  This ability can usefully be 
applied to rainfall-runoff records from catchments 
subject to large seasonal and year-to-year 
variations and to unmeasured snowmelt. 
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