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Abstract: Most catchment-scale rainfall-runoff models represent as time -invariant such features of the 
hydrograph as lag to peak, volumetric throughput and recession time constant.  While this assumption has 
been shown to suit many catchment-modelling purposes, it obscures any variation in response characteristics 
over the range of conditions in which the model is calibrated. The assumption of time invariance is tested by 
use of linear, transfer-function models with time-varying parameters. The approach is illustrated on seven 
years’ daily rainfall and streamflow records from a 10.5 km2 forested catchment in Virginia.  Models are 
fitted by recursive minimum-covariance estimation with optimal smoothing, treating various subsets of the 
model parameters as time-varying, modelled as random walks. The extent of time variation is specified by 
variances for the parameter increments. These are chosen by reference to the root-mean-squared value of the 
residuals, the ratio of mean-square values of the one-step-prediction errors and residuals, and the credibility 
of the parameter variations. Care is found to be necessary because variations in gain and dominant time 
constant interact through the transfer-function denominator coefficients. The role of a time-varying output-
offset term in the model is examined. Significant time variation is found in volumetric throughput and 
recession time constant, as a consequence of non-linearity and unmodelled or incompletely modelled 
phenomena such as evapotranspiration, varying soil moisture and snowmelt. The broad conclusion is that a 
substantial reduction in residuals and improvement in short-term prediction performance is obtainable by 
representing the catchment behaviour as linear but time-varying. The results indicate the extent of variation 
of linear-model and hydrological parameters. 
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1. INTRODUCTION 

It is well established (Jakeman and Hornberger, 
1993; Ye et al., 1997) that catchment-scale daily 
rainfall-runoff relations can be adequately 
modelled for many purposes by models with 
linear, low-order, time-invariant dynamics from 
effective rainfall to flow; a non-linear module 
accounts for evapotranspiration and soil moisture 
(Evans and Jakeman, 1997). The assumed 
constancy of such hydrograph features as time to 
peak, volumetric throughput and recession time 
constant is usually satisfactory when the model 
has to represent average behaviour over periods 
comparable to the calibration period.  

It is possible to test how far the assumption of 
time invariance is met by shorter-term and large-

event behaviour by fitting time-varying, linear, 
low-order models then examining the variation of 
their parameters and the changes in model 
performance. If a linear, lumped model is to 
approximate closely a non-linear, distributed 
dynamical system such as a catchment, its 
parameter values must generally depend on state 
and input. The parameter variation of a time-
varying, linear rainfall-runoff model should 
therefore be interpretable by reference to soil 
moisture (storage state), rainfall and any other 
significant input such as snowmelt.   

The idea of identifying linear, time-varying 
models for environmental applications is not new 
(Young et al. , 1991). Computationally cheap 
recursive algorithms for estimating the parameters 
of such models have long been available (Norton, 



1975; Young, 1984). Even so, the approach 
remains underexploited. This paper will illustrate 
its ability to yield insight into circumstances 
where catchment behaviour is not well modelled 
by time-invariant transfer-function models. In 
such circumstances, examination of the nature of 
the time variation can suggest how the model 
should be modified or replaced. Some potential 
pitfalls in estimating linear, time -varying models 
are also pointed out.  

2. PARAMETER ESTIMATION 

2.1. Model structure 

The discrete-time model is of the ARMAX form 
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where t denotes time, y is streamflow, u is 
rainfall, A’(q-1), B(q-1), and C(q-1) are polynomials 
in the one-sample -delay operator (so, for instance, 
q-1ut ≡ ut-1 ). In the “noise” model, intended to 
model structured output behaviour not explained 
by the input, C(q-1) is monic, {e} is a white, zero-
mean noise-generating sequence. The constant or 
slowly varying offset d accounts for flow 
components too slow and/or uncorrelated with 
rainfall to be covered by the rest of the model. 
The parameters to be estimated are d and the 
coefficients in A’, B and C. Defining A(q-1) as 
1+A’(q-1), the model can be rewritten in transfer-
function (output-error) form as 
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The poles of the model are the zeros of A(q-1). 
Two quantities derived from the model are 
particularly informative: the steady-state gain 
gss=B(1)/A(1) (which can be interpreted as a 
possible time-varying area under the unit 
hydrograph) and the dominant (recession) time 
constant τd, which is related to the dominant pole  
pd of this discrete-time model by pd=exp(-T/τd), 
where T is the sampling interval of u and y. Hence 
τd =–T/ln |pd| (with the modulus signs providing 

for the pole turning out to be complex, although it 
is, of course, real if the model is hydrologically 
credible). 

2.2.  Estimation algorithm 

The parameter-estimation algorithm is derived 
elsewhere (Norton, 1975, 1976, 1986) and a 
detailed understanding of it is unnecessary here, 
but will be outlined to put it in context and show 
its assumptions. It is recursive, i.e. it steps 
through the input-output records, updating 
estimates of all the unknown parameters as it 
goes. Its essential components are 

• optimal smoothing (retrospective, minimum-
covariance, linear, unbiased state estimation) 
applied to model parameters represented as 
the elements of a state vector x, in which the 
variables are represented either as constant 
or as  executing random walks;  

• an observation equation consisting of (1) 
with the lagged input and output-minus-
offset values on the right-hand side treated as 
known, forming the elements of a 
“regressor” vector h;  

• a structured noise model  to avoid bias; and  

• approximation of the unknown  et-i, 1≤i≤nc, 

by residuals 
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earlier recursion steps, as in extended least 
squares, and approximation of the terms dt-i, 
1≤i≤na attached to the earlier output samples 
by their estimates from earlier steps.  

The parameters have specified mean-squared 
(m.s.) values for their increments (white, zero-
mean sequences driving the random walks). In 
contrast to most recursive algorithms, which pass 
only once through the records, optimal smoothing 
performs a reverse pass through the records after 
an initial forward pass, so as to incorporate the 
information about the parameters present in the 
later output observations as well as the earlier 
ones. The forward pass is  
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for t=1,2,...,N , followed by the reverse pass 
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back to t=0. Here Pt is the covariance of tx̂ , 

normalised by the m.s. value of et = yt – ht
Txt .Its 

principal diagonal elements indicate the variances 
of the estimates of the individual parameters. The 
“state” and “observation” vectors are, in detail, 
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and Nt|x̂ , 0≤t≤N , signifies the estimates based on 

the entire N-point records. The user must provide 
initial parameter estimates 0x̂ and their error 

covariance P0. By default, 0x =0ˆ  and P0 is 

diagonal with large non-zero elements, say 106I if 
the unknown parameters are thought to be of the 
order of unity. A diagonal matrix Qt-1 specifies 
the m.s. values of the parameter changes from 
time t-1 to time t (zero for constant parameters); 
for simplicity, the same Q is used throughout any 
one run, with single values for all coefficients in 
A’ and all coefficients in B.  

3. TESTS 

3.1. Records  

The records are daily rainfall and streamflow 
from October 1, 1992 to August 16, 1999 for the 
10.5 km2  catchment of the Staunton River on the 
eastern flank of the Blue Ridge in Virginia, USA. 
An accompanying temperature record allows 
calculation of effective rainfall (Jakeman and 
Hornberger, 1993); models using both raw and 
effective rainfall are examined below. 

A companion paper (Chanat and Norton, 2003) 
discusses the peculiarities of the records and 
catchment. The aims here are broader: to see, in a 
typical example, how time-varying A, B and d 
deal with various aspects of the response, how 
model performance and derived quantities such as 
dominant time constant and steady-state gain are 
influenced by time variation of the parameters, 
and how anomalies and causes can be identified. 

3.2.  Runs 

About 30 runs were performed with raw rainfall 
as input and a similar number with effective 
rainfall. The runs have differing extents of time 
variation of the parameters, as prescribed by the 
mean-square increments in their random walk 
models, i.e. the diagonal elements of Q. The main 

indicators used to compare runs are the r.m.s. 
value re of the residuals, the ratio ρ =(m.s. 1-step 
prediction error)/(m.s. residual)  and the 
credibility of the variations in the parameters, as 
shown by the steady-state gain gss and dominant 
time constant τd. Monitoring of ρ  is crucial to 
avoid excessive parameter variation due to too-
high Q: as Q is raised, re continues to fall because 
the model is permitted to follow short-term output 
behaviour more rapidly, but ultimately the 
parameter variation is influenced too much by 
noise not reflecting the catchment dynamics. 
Deterioration in prediction performance is then 
detected by a rise in ρ  from very near unity, 
where it remains so long as the model follows 
only genuine response changes. 

The results reported below were obtained with 
na=nb=nc=3 unless otherwise stated. This model 
structure is conservative (not strictly 
parsimonious); the transfer-function numerator 
and denominator orders were chosen to be 
slightly higher than the order, 1 or 2, typically 
found necessary to model long-term average 
behaviour, to provide flexibility in tracking 
possibly complicated changes in dynamics and 
possibly varying transport delays. The noise order 
is a compromise between flexibility and 
parsimony.  Section 4.5 discusses alternative 
model structures. 

4. RESULTS AND COMMENTS 

4.1. Varying transfer function and offset 

First we compare the model representing all 
parameters as time -invariant with the model with 
time-varying A, B  and d, for specified m.s. 
changes qA=10-5, qB=10-6 and qd=10-3 (roughly 
tuned to give credible variation and ρ  near 1). 
The time -varying model has re 48.7%  and 49.3% 
lower for raw and effective rainfall inputs 
respectively, with ρ =1.023, 1.032 indicating 
negligibly worse prediction. [Inclusion of d in the 
time-invariant model reduces re by less than 1%]. 
The large improvement due to time variation 
shows that the time -invariant model misses 
significant short-term catchment behaviour. 

Next each of A, B and d in turn is allowed to vary, 
with qA ,qB ,qd  as above in the first instance. 

4.2. Varying transfer function denominator 

Varying A  alone reduces  re by 4.7% and 7.8% for 
raw and effective rainfall, with ρ =1.002 for both. 
Increased qA=10-4 yields reductions of 7.7% and 
12.1% at acceptable ρ =1.02,1.01, but the time 



constant τd shows strong correlation with flow 
(Figure 1, middle trace). 
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Figure 1.  Dominant time constant for 3rd-order 
transfer-function raw rainfall-runoff model with 
only A varying (middle), both A and B varying 

(top). Bottom trace is flow. 

This is hard to justify, as the response is expected 
to become slower, not quicker, in recessions. If 
both A and B vary, with qA=10-4 and qB=10-5, the 
behaviour of the time constant during recessions 
is markedly more credible (Figure 1, top). It now 
has sharp minima in large flow events and is 
higher except at a few peaks. The explanation is 
that when A alone varies, it has to rise in periods 
of low steady-state gain (recessions), as B cannot 
decrease. Since A(q-1) ≅ 1-pdq-1 for a dominant, 
positive, real pole pd, a rise in A implies a fall in 
pd, shortening the time constant. Allowing B to 
vary provides  a direct way to accommodate gain 
variations, leaving A to track the time constant.  

Also in Figure 1, the occurrence of peaks in time 
constant, some sharp, at days 177, 512-513, 525, 
907 and 1183, close to minor flow peaks, needs 
explanation. The peaks are due to rain-induced 
snowmelt (Chanat and Norton, 2003), which 
causes relatively slow rises compared with those 
due to saturating rainfall. 

4.3. Varying transfer function numerator 

Varying B alone with qB=10-6 reduces re by 32.3% 
and 38.0% at ρ =1.017, 1.025 for raw and 
effective rainfall, while qB=10-5 reduces re by 
46.2% and 50.1% but with a sharp rise in ρ  to 
1.112, 1.117. However, if A is allowed to vary 
with qA=10-4 at qB=10-6, re is reduced  further by 
13.6% and 20.6% for raw and effective rainfall 
inputs, with ρ  rising only to 1.034 and 1.039. 
Figure 2 shows the time constant τd for both 
rainfall records. With effective rainfall as input, 
rises in time constant during recessions are more 
apparent, and the height of the peak produced by 
snowmelt near time 512 is reduced. 
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Figure 2.  Dominant time constant with A and B 
varying and no offset; raw rainfall (top trace near 

t=512), effective rainfall (middle trace near 
t=512) as input. Bottom trace is flow. 

Figure 3 shows that use of effective rainfall 
removes much of the need for variation in gain gss 
when using raw rainfall, as intended. Even so, 
enough variation remains to suggest that more 
model augmentation is desirable. 
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Figure 3.  Steady-state gain with both A and B 

varying and no offset,; raw rainfall (upper), 
effective rainfall (lower) as input. 

4.4. Inclusion of offset in model 

Next the effect of adding an offset is examined. 
With raw rainfall as input, setting qd=0.0025 
gives the offset compared with flow in Figure 4. 

The offset acts as a credible baseflow estimate, 
reaching zero near the ends of long recessions, 
but for one anomaly: an excursion below zero 
following the huge event at day 1440. Here 
interestingly the gain is overestimated, and this 
persists for some time because of the constraints 
on parameter variation imposed by Q. 
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Figure 4.  Offset with A, B and d varying. Raw 

rainfall as input. 

The addition of the offset reduces re only by 
2.0%, at almost exactly the same ρ, but, as Figure 
5 shows, takes up enough of the slow variation in 
flow to reduce the variation of gss by about a 
third. 
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Figure 5.  Steady-state gain with A and B 

varying: no offset (top), qd = 0.0025 (middle), 
with raw rainfall as input. Bottom trace is flow. 

The effect on the dominant time constant, Figure 
6, is to flatten all but the largest peaks and to 
bring the estimates using raw and effective 
rainfall considerably closer together.  
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Figure 6.  Dominant time constant, with A, B and 

d varying. Raw (upper) and effective (lower) 
rainfall as input. 

With effective rainfall as input, the offset reduces 
re by 2.9% and leaves ρ  at 1.039. In contrast to 
the result when raw rainfall is used, the offset is 
never close to zero and varies much less (like the 
gain), as would be expected if the effective 
rainfall computation took good account of 
evapotranspiration loss and soil moisture 
variation. However, the offset exceeds the flow 
during every recession (Figure 7), which is 
possible evidence that the loss is underestimated 
by the transfer function section of the model 
during recessions. This is supported by the fact 
that, even with effective rainfall as input, the gain 
gss falls during recessions, indicating 
underestimation of the loss (for the calculation of 
which the parameters were not carefully tuned). 
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Figure 7.  Offset with A, B and d varying: 

effective (upper) and raw (lower) rainfall as input. 

The importance of the non-linear 
evapotranspiration loss computation, if a 
constant-parameter, linear model is to be used for 
the rainfall-runoff relation, is demonstrated by 
Figure 8. It shows that use of effective rainfall 
achieves a large reduction in seasonal variation of 
the steady-state gain of the catchment. 
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Figure 8.  Steady-state gain, with A, B and d 
varying. Raw (upper) and effective (lower) 

rainfall as input. 

The remaining variation, by about a factor of two, 
stems from unmodelled influences of changing 



transport delay (visible on close inspection of the 
records), non-linearities in the flow processes 
during extreme events, inhomogeneous gauging 
errors (Chanat and Norton, 2003) and snowmelt, 
as well as the possibly suboptimal tuning of the 
loss-module parameters noted above. 

4.5.  Other model orders 

The results so far are for models with 
na=nb=nc=3, set high enough to minimise the risk 
of missing significant behaviour. A brief 
investigation of simpler models with qA ,qB ,qd as 
in Section 4.4 shows that na=nb=2 gives 
essentially the same results, but reducing nA to 1 
while keeping nb=nc=3 (making the transfer 
function improper but not unphysical) raises re 
only by 4.5% and 5.5% for raw and effective 
rainfall inputs,  and leaves ρ almost unchanged at 
1.042 and 1.042. The reduced freedom in A has 
the effect of transferring some of the observed 
flow from transfer function output to offset, 
without greatly affecting the smoothness or shape 
of either. One might infer that overparameterised 
models risk overestimating gain and 
underestimating baseflow. 

5. CONCLUSIONS 

The effects of representing selected parts of a 
linear rainfall-runoff model as time-varying have 
been investigated. Substantial reductions in r.m.s. 
residual are obtainable with negligible loss of 
one-step predictive power. Interaction between 
gain and dominant time constant through the 
coefficients of the transfer function denominator 
is found problematical unless adequate ability to 
track gain changes is conferred by time-varying 
numerator coefficients. Inclusion of a time-
varying offset term, acting as a baseflow 
estimator, has been found effective when raw, but 
not effective, rainfall is the input. The behaviour 
of the offset and the steady-state gain throws 
some light on the extent to which the effective-
rainfall calculation has succeeded. 
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