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Abstract: Whether or not river flow dynamics exhibit low-dimensional determinism remains an 
unresolved question. While, on one hand, studies on the use of low-dimensional deterministic techniques 
for modeling and prediction of river flow dynamics are on the rise and the outcomes (regarding the 
presence of low-dimensional determinism) are encouraging, on the other hand, suspicions and criticisms on 
such studies continue to exist as well. An important reason for such suspicions and criticisms, however, is 
that the correlation dimension method, used as a determinism identification tool in most of those studies, 
possesses inherent limitations when applied to (real) river flow series, which are always finite (and often 
short) and contaminated with noise (e.g. measurement error). In view of this, the present study addresses the 
issue of low-dimensional determinism in river flow dynamics using prediction as an indicator. This is done 
by: (1) reviewing studies that have employed low-dimensional deterministic approaches (coupling phase-
space reconstruction and local approximation techniques) for river flow predictions; and (2) identifying 
determinism (or distinguishing determinism and stochasticity) based on the level of prediction accuracy in 
general, and based on the prediction accuracy against the phase-space reconstruction parameters (also called 
as “inverse approach”) in particular. The results not only provide possible evidence to the presence of low-
dimensional determinism in the river flow series studied but also support, both qualitatively and 
quantitatively, the low correlation dimensions reported for such series. Therefore, low-dimensional 
deterministic techniques are a viable alternative for studying river flow dynamics, if only sufficient caution 
is exercised in their application and in interpreting the outcomes. 
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1. INTRODUCTION 
 
Whether river flow dynamics are governed 
dominantly by a large number of variables or by 
only a very few variables has been and continues 
to be an unresolved question. The (seemingly) 
irregular behaviors of river flow phenomena and 
the (significant) variability they exhibit both in 
time and in space have led a majority of 
researchers to employ the concept of stochastic 
process for modeling and prediction of their 
dynamics. The ability of the stochastic models to 
fairly represent the important (statistical) 
characteristics of river flow series and the 
reasonably good predictions achieved on their 
evolutions have further strengthened our view on 
the usefulness of the stochastic process concept 
for river flow. 
 
However, as river flow at some time/space scales 
are not as irregular and as complex as that at 

other time/space scales (suggesting possible 
simplicity in the former), the appropriateness of 
the stochastic process concept for every river 
flow phenomenon remains to be answered. The 
limitation that lies with the stochastic models 
may be explained with reference to the 
(deliberate) removal therein of the simple and 
easily predictable components of river flow (e.g. 
trend, seasonal and annual cycles), which is 
essentially done so that the time series under 
investigation suits the (random) assumption 
involved in the models. If this were the case, then 
any attempt to assess the usefulness and 
appropriateness of the stochastic models based 
on the river flow predictions achieved is 
misleading. 
 
The necessity of the stochastic process concept 
for every river flow phenomenon comes into 
further question with our knowledge of chaos 
theory (Lorenz, 1963), according to which 



 

complex and irregular looking phenomena (such 
as river flow) might also be the outcome of 
simple deterministic systems with only a few 
nonlinear interdependent variables with sensitive 
dependence on initial conditions. Searching for 
the possible presence of low-dimensional 
determinism (also commonly called as 
deterministic chaos) in river flow dynamics and, 
upon identification of its presence, predicting 
their dynamics using nonlinear deterministic 
prediction techniques have been  among the most 
exciting research activities in hydrology in recent 
times. Within this overall framework, studies 
have concentrated on only identification (e.g. 
Stehlik, 1999) or only prediction (e.g. Liu et al., 
1998; Sivakumar et al., 2001) or both 
identification and subsequent prediction (e.g. 
Porporato and Ridolfi, 1997; Lambrakis et al., 
2000; Islam and Sivakumar, 2002). 
 
In studies investigating the presence of 
deterministic chaos in river flow dynamics, it is a 
common practice to employ the correlation 
dimension method (e.g. Grassberger and 
Procaccia, 1983) and assume the presence of low 
dimension either as a proof (e.g. Stehlik, 1999) 
or as a preliminary evidence (e.g. Porporato and 
Ridolfi, 1997; Islam and Sivakumar, 2002) of 
chaos. However, these studies and the reported 
results are often criticized, since the correlation 
dimension method has been found to possess 
certain important limitations, such as: (1) it is 
designed under the assumptions that the time 
series is infinite and noise-free; and (2) finite and 
low correlation dimensions might result also 
from linear stochastic processes (e.g. Osborne 
and Provenzale, 1989; Schertzer et al., 2002). 
Even though, the bases for such criticisms are 
often unfounded [see Sivakumar (2000) and 
Sivakumar et al. (2002a) for details] and the 
arguments put forth therein are unsupported [see 
Sivakumar et al. (2002b) for details], the 
potential limitations that exist in the use of the 
correlation dimension method for identifying 
chaos cannot be brushed aside completely. 
 
In view of the above, there is a need to find an 
alternative way to (verify and) support the results 
reported by past studies regarding the possible 
presence of deterministic chaos in river flow 
dynamics. This issue is addressed in the present 
study, where an inverse approach (e.g. Casdagli, 
1989, 1991; Sugihara and May, 1990) is used to 
identify deterministic chaos. As per this 
approach, the presence of deterministic chaos is 
identified using the river flow prediction results 
reported by such studies themselves. This is done 
by: (1) assessing the ability of the nonlinear 
deterministic local approximation approaches for 

predicting river flow dynamics; and (2) 
comparing the prediction results with respect to 
the parameter(s) used in the local approximation 
procedure. The inverse approach may be 
considered much more reliable than the 
correlation dimension method for chaos 
identification, since it is essentially based on 
predictions, which is the primary purpose behind 
characterizing a system in the first place. 
 
The organization of the paper is as follows. 
Section 2 presents a brief account of the 
nonlinear prediction method and the inverse 
approach to identify chaos. Section 3 reviews the 
studies on river flow predictions using the 
nonlinear prediction method and also discusses 
the results in terms of the inverse approach. 
Conclusions are presented in Section 4. 
 
 
2. NONLINEAR PREDICTION METHOD 
 
In the nonlinear prediction method, the 
underlying dynamics of the system (e.g. time 
series) under investigation is represented by 
reconstructing the phase-space, i.e. embedding 
the single-dimensional (river flow) series, Xi, i = 
1, 2, …, N, in a multi-dimensional phase-space, 
according to: 
 
Yj = (Xj, Xj+τ, Xj+2τ, ..., Xj+(m-1) τ)    (1) 
 
where j = 1, 2, ..., N-(m-1)τ, m is the dimension 
of the vector Yj, called as embedding dimension; 
and τ is a delay time or interval (e.g. Takens, 
1981). A (correct) phase-space reconstruction in 
a dimension m allows one to interpret the 
underlying dynamics in the form of an m-
dimensional map fT, that is, 
 
Yj+T = fT(Yj)        (2) 
 
where Yj and Yj+T are vectors of dimension m, 
describing the state of the system at times j 
(current state) and j+T (future state), 
respectively. The problem then is to find an 
appropriate expression for fT (e.g. FT). 
 
There are several approaches for determining FT. 
However, the local approximation approach (e.g. 
Farmer and Sidorowich, 1987) is widely 
employed (in river flow studies). In this 
approach, the fT domain is subdivided into many 
subsets (neighborhoods), each of which identifies 
some approximations FT, valid only in that subset 
and, hence, in this way, the underlying system 
dynamics are represented step by step locally in 
the phase-space. 



 

The identification of the sets in which to 
subdivide the domain is done by fixing a metric ||  
|| and, given the starting point Yj from which the 
forecast is initiated, identifying neighbors Yj

p, p = 
1, 2, …, k, with jp < j, nearest to Yj, which 
constitute the set corresponding to Yj. The local 
functions can then be built, which take each point 
in the neighborhood to the next neighborhood: 
Yj

p to Yj+1
p. The local maps may be learned in the 

form of local averaging (e.g. Farmer and 
Sidorowich, 1987) or local polynomials (e.g. 
Abarbanel, 1996). The local averaging procedure 
has an important advantage over the local 
polynomial technique, as it is computationally 
inexpensive. 
 
The prediction accuracy may be evaluated using 
statistical evaluators, such as correlation 
coefficient (ρ), root mean square error (RMSE), 
and coefficient of efficiency (R2). The time series 
plots and scatter diagrams may also used to 
choose the best prediction results among a large 
combination of results achieved with different 
embedding dimensions and number of neighbors. 
 
The presence of chaos in the underlying 
dynamics may generally be assessed using the 
inverse approach, as follows: 

1. By assessing the general performance of the 
nonlinear deterministic local approximation 
approach. A high prediction accuracy may 
be an indication that the underlying 
dynamics are nonlinear deterministic, 
whereas a low prediction accuracy is 
expected if the dynamics are stochastic; and 

2. By checking the prediction accuracy against, 
for instance: 
(a) The embedding dimension (m): If the 

dynamics are chaotic, then the prediction 
accuracy would increase (to its best) with 
the increase in the embedding dimension 
up to a certain point, called the optimal 
embedding dimension (mopt), and remain 
close to its best for embedding 
dimensions higher than mopt. For 
stochastic time series, there would be no 
increase in the prediction accuracy with 
an increase in the embedding dimension 
and the accuracy would remain the same 
for any value of the embedding 
dimension (e.g. Casdagli, 1989); 

(b) The lead time (T): For a given embedding 
dimension, predictions in chaotic systems 
deteriorate considerably faster than in 
stochastic systems when the lead time is 
increased. This is due to the sensitivity of 
chaotic systems to initial conditions (e.g. 
Sugihara and May, 1990); and 

(c) The number of neighbors (k): Smaller 
number of neighbors would give the best 
predictions if the system dynamics are 
chaotic, whereas for stochastic systems, 
the best predictions are achieved when 
the number of neighbors is large (e.g. 
Casdagli, 1991). 

 
 
3. RIVER FLOW PREDICTIONS USING 

NONLINEAR PREDICTION METHOD  
 

3.1. Review 
 
In recent years, several studies have attempted 
river flow (and spring discharge) predictions 
using nonlinear deterministic local 
approximation prediction methods. In these 
studies, river flow series observed at different 
temporal scales, different climatic regions, and 
different basin characteristics have been 
analyzed. As the presence of noise in the data 
could affect the predictions, some studies have 
even attempted predictions of noise reduced river 
flow series and compared with that of the raw 
series (e.g. Porporato and Ridolfi, 1997; 
Jayawardena and Gurung, 2000). Comparisons 
between the nonlinear prediction method and 
other techniques (such as stochastic methods and 
artificial neural networks) for river flow 
predictions have also been made by some studies 
(e.g. Jayawardena and Gurung, 2000; Lambrakis 
et al., 2000; Sivakumar et al., 2002a, c). 
 
Table 1 presents the river flow prediction results 
in terms of correlation coefficient (ρ) and 
coefficient of efficiency (R2) reported by some of 
the above studies [the correlation dimensions, D, 
obtained are also presented therein]. These 
studies are chosen in such a way that the 
associated river flow series cover wide temporal, 
climatic, and basin ranges, and that they may be 
considered reasonable representations of flow 
series for subsequent interpretations. As most of 
these studies have also employed other 
techniques (e.g. correlation dimension method) 
to identify chaos, the additional results could 
further facilitate the interpretations. 
 

3.2. Discussion of Results: Inverse Approach 
 
Prediction accuracy 
As may be seen from Table 1, the predictions 
achieved for the various river flow series using 
the nonlinear local approximation method are 
extremely good. The correlation coefficient and 
the coefficient of efficiency are, in general, 
greater than 0.90. Comparisons of the observed 



 

and the predicted  flow series through direct time 
series plots, such as the one shown in Figure 1 
for the daily river flow from the Lindenborg 
catchment in Denmark (Islam and Sivakumar, 
2002), and scatter diagrams [figure not shown 
herein; see Islam and Sivakumar (2002)] reveal 
excellent agreement between the two. Excellent 
agreement between observed and predicted river 
flow values have also been reported by other 
studies (e.g. Porporato and Ridolfi, 1997, 2001; 
Lisi and Villi, 2001; Sivakumar et al., 2001, 
2002a, c). 
 
Table 1. River flow predictions using nonlinear 
local approximation prediction method (lead time 
= 1 day or 1 month). 
 

 
River 

flow data 
 

 
ρ 

 
R2 
 

 
D 

 
Reference* 

 

 
Daily 
 
Denmark 
Greece 
Italy 
 
 
Thailand 
 
 
USA 
 
 
Monthly 
 
Brazil 
 
Sweden 

 
 
 
0.99 
0.90 
0.95 
0.98 
0.88 
0.99 
0.99 
0.79 
0.85 
0.99 
 
 
 
0.89 
0.89 
0.99 

 
 
 

0.98 
 
 

0.95 
 
 

0.96 
 
 

0.99 
 
 
 

0.94 
 

0.99 

 
 
 
< 4 
< 4 
< 4 
 
< 3 
< 2 
 
< 3 
< 4 
< 3 
 
 
 
 
< 4 
< 6 
 

 
 
 
IS(02) 
LAPGB(00) 
PR(97) 
PR(01) 
LV(01) 
JG(00) 
SJF(02) 
JG(00) 
LIRL(98) 
SJ(02),S(03) 
 
 
 
SBP(01) 
SPBU(02) 
SBOJK(00) 

*IS(02) – Islam and Sivakumar (2002); 
LAPGB(00) – Lambrakis et al. (2000); PR(97) – 
Porporato and Ridolfi (1997); PR(01) – 
Porporato and Ridolfi (2001); LV(01) – Lisi and 
Villi (2001); JG(00) – Jayawardena and Gurung 
(2000); SJF(02) – Sivakumar et al. (2002c); 
LIRL(98) – Liu et al. (1998); SJ(02) – Sivakumar 
and Jayawardena (2002); S(03) – Sivakumar 
(2003); SBP(01) – Sivakumar et al. (2001); 
SPBU(02) – Sivakumar et al. (2002a); 
SBOJK(00) – Sivakumar et al. (2000). 
 
These observations clearly indicate the 
usefulness and suitability of the nonlinear local 
approximation method for river flow predictions, 
where the underlying river flow dynamics are 
captured in the phase-space step by step in local 

neighborhoods. As the local approximation 
approach is essentially a nonlinear deterministic 
procedure, a possible implication of the above 
extremely good river flow prediction results is 
that the underlying dynamics are deterministic. 
The low correlation dimensions (< 6) obtained 
for these series seem to support the above 
interpretation. Also, comparisons of predictions 
from local approximation methods with those 
from stochastic methods (e.g. Jayawardena and 
Gurung, 2000) and artificial neural networks 
(e.g. Lambrakis et al., 2000; Sivakumar et al., 
2002a, c) indicate that the former perform better 
(sometimes significantly) or at least equally well. 
This result is additional evidence to the possible 
existence of deterministic behavior in the river 
flow dynamics. 
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Figure 1. Comparison between observed and 
predicted values: daily river flow series from 

Lindenborg catchment in Denmark [from Islam 
and Sivakumar (2002)]. 

 
 
Prediction vs. embedding dimension 
Figure 2, for instance, presents the relationship 
between the prediction accuracy (in terms of 
correlation coefficient) and phase-space 
(embedding) dimension when the nonlinear 
prediction method is employed to the daily flow 
series from Nakhon Sawan station at the Chao 
Phraya River basin in Thailand (Sivakumar et al., 
2002c). As may be seen, the prediction accuracy 
increases with the increase in the embedding 
dimension up to a certain point (m = 3) and then 
decreases when the dimension is increased 
further. The presence of this low optimal 
embedding dimension, i.e. mopt = 3, seems to 
indicate that the river flow dynamics exhibit low-
dimensional chaotic behavior, dominantly 
governed by only a very few (in the order of 3) 
nonlinear interdependent variables. The decrease 
in the prediction accuracy (rather than an 
expected saturation) with the increase in the 
embedding dimension could be due to the 
presence of noise in the data [see, for instance, 
Porporato and Ridolfi (1997) and Sivakumar 



 

(2000) for details]. Low optimal embedding 
dimensions have also been observed for several 
other river flow series studied for prediction 
purposes (e.g. Porporato and Ridolfi, 1997; Liu 
et al., 1998; Lambrakis et al., 2000; Sivakumar et 
al., 2001, 2002a; Islam and Sivakumar, 2002), 
indicating the possible low-dimensional 
deterministic nature of such river flow dynamics. 
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Figure 2. Prediction accuracy against embedding 
dimension: daily river flow series from Nakhon 
Sawan station at the Chao Phraya River basin in 

Thailand [from Sivakumar et al. (2002c)]. 
 
 
Prediction vs. lead time 
For a chaotic system, due to its sensitivity to 
initial conditions, prediction accuracy decreases 
rapidly when the prediction lead time increases. 
Such a result is observed in the predictions 
obtained for the monthly river flow series from 
the Coaracy Nunes/Araguari River watershed in 
northern Brazil, shown in Figure 3 (Sivakumar et 
al., 2001), indicating the presence of chaotic  
behavior in the river flow dynamics. Similar 
results have also been reported for several other 
river flow series (e.g. Porporato and Ridolfi, 
1997; Lambrakis et al., 2000; Lisi and Villi, 
2001; Sivakumar et al., 2002c), revealing the 
deterministic nature of the underlying dynamics. 
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Figure 3. Prediction accuracy against lead time: 

monthly river flow series from Coaracy 
Nunes/Araguari River watershed in northern 

Brazil [from Sivakumar et al. (2001)]. 
 

Prediction vs. number of neighbors 
Even though, extensive details of the effect of 
number of neighbors used in the nonlinear 
prediction  method on the river flow predictions 
have not been made available [except the study 
by Jayawardena et al. (2002)], results from the 
trial-and-error procedures, as adopted in most of 
the studies, indicate that the best predictions are 
achieved only when the number of neighbors is 
small (e.g. Porporato and Ridolfi, 1997, 2001; 
Lisi and Villi, 2001; Sivakumar, 2003), i.e. 
typically less than 10% of the total number of 
neighbors. These results are an indication that the 
underlying dynamics are more of a deterministic 
nature, rather than of a stochastic nature. 
 
 
4. CONCLUSIONS 
 
Studies reporting possible presence of low-
dimensional deterministic chaos in river flow 
dynamics are often criticized, due essentially to 
the potential limitations of the correlation 
dimension method, which is widely used to 
identify chaos. An attempt was made herein to 
address this issue by identifying chaos from river 
flow predictions (i.e. referred to as “inverse 
approach”). A review of studies on river flow 
predictions using nonlinear deterministic 
prediction methods provided convincing 
evidence to the possible low-dimensional 
deterministic nature of river flow dynamics. 
More importantly, the reported prediction results 
(in one way or another) also supported 
(qualitatively and quantitatively) the correlation 
dimension results reported by such studies. The 
present observations clearly reveal that nonlinear 
low-dimensional deterministic techniques are a 
viable alternative for studying river flow 
dynamics, if sufficient caution is exercised in the 
implementation of the available methods and also 
in the interpretation of the results. 
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