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Abstract: In this paper, the performance of two estimation methods that are used to solve the inverse 
problem in hydrology was compared using a stochastic solute transport model (SSTM), which was presented 
at a previous MODSIM conference, as a test case. The first method was a hybrid Artificial Neural Network 
(ANN) and the second was a conventional curve fitting technique. It was found that using a smaller range for 
the output variables in the training model could enhance the accuracy of the estimates given by the ANN 
model. Self Organising Maps (SOM) were employed to cluster a larger dataset into different categories. Then 
the SOM model was fed with the dataset that represents the system to identify the corresponding data group. 
Afterwards a multi layer perceptron was employed to obtain the final estimates of the SSTM parameters. 
Initially the method was tested on a synthetic dataset. Results reveal that model predictions are satisfactory 
and the average absolute error of the estimates for a highly random data range is approximately 5.5% and 
outcomes are better for other ranges. Furthermore, the performance of the inverse model was robust and 
consistent against different sets generated using the standard Wiener processes. Then the method was tested 
using the data from an artificial aquifer at Lincoln University, New Zealand. The second method, the curve-
fitting technique, was used to determine the hydrologic parameters of the aquifer parameters by fitting solute 
concentration profiles of the aquifer and the model. Comparative results of two methods are in reasonable 
agreement. The hybrid ANN approach is simple and easy to use but results indicate that it is a robust inverse 
method. However, knowledge of ANNs and prior information of the system are necessary to improve the 
accuracy of the estimates. 
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1. INTRODUCTION 

A sufficient knowledge of hydrogeological 
parameter distribution of the spatial region is one 
of the most important requirements in hydrology 
modelling. When we model the behaviour of a 
hydrology system, for instance groundwater flow 
and solute transport in porous media through 
differential equations, it is often necessary to 
assign numerical values to these parameters. These 
values are obtained from laboratory experiments 
and/or field scale experiments. However, such 
values may not represent the often complex 
patterns across a large geographic area, hence 
limiting the effectiveness of the model. In addition, 
these field scale experiments can be expensive. 
Conversely, often we are interested in modelling 
for quantities such as the depth of water table and 
solute concentration. This is because they are 
directly relevant to environmental decision-
making, and we measure these variables regularly 
and the measuring techniques tend to be cheaper. 
Further we can continuously monitor these 
decision (output) variables in many situations. 

Therefore it is reasonable to assume that these 
observations of the output variables represent the 
current status of the system. If the dynamics of the 
system can reliably be modelled by a relevant 
differential equation, we can expect that the 
parameters estimated based on the observations 
may give us more reliable representative values 
than those obtained from laboratory tests and the 
literature.  
 
There have been numerous studies dedicated to 
develop inverse methodologies. Some of these 
methods are primitive trial and error techniques, 
optimisation approaches and geostatistical 
methods. Simple optimisation techniques are not 
suitable to address the high random variations in 
real world aquifers. Whereas, the geostatistical 
methods take the geological uncertainty into 
account. However, it appears that average 
practitioners find it hard to understand and apply 
the highly theoretical geostatistical methods. 
Further, several reviews on geostatistical inverse 
methods have shown that developers of inverse 
methods have perhaps focused too much on 
validating their methods on too-simple synthetic 



data fields and those methods are not performing 
well in some heterogeneous conditions. Moreover, 
it may be difficult to identify the most appropriate 
inverse method for a given problem, as different 
types of heterogeneity may be prominent for the 
system of interest (Zimmerman et al., 1998). Over 
the past decade a few Artificial Neural Networks 
(ANN) approaches were developed to predict the 
hydrogeologic parameters (Aziz and Wong, 1992: 
Balkhair, 2002).   
 
ANN have the ability to solve extremely complex 
problems with highly non-linear relationships. 
ANN’s flexible structure is capable of 
approximating almost any input-output 
relationships. It has been proved that ANN’s 
flexible structure can provide simple and 
reasonable solutions to various problems in 
hydrology. Since the beginning of the last decade, 
ANN have been successfully employed in 
hydrology research, such as rainfall-runoff 
modelling, stream flow forecasting, precipitation 
forecasting, groundwater modelling, water quality 
and management modelling (Morshed and 
Kaluarachchi, 1998; Maier and Dandy, 2000).  
 
The outcome of the above mentioned inverse 
methodologies is utterly dependent on the accuracy 
of the model formulation. Nevertheless, most of 
the models, which are commonly used by the 
practitioners to simulate natural systems, represent 
linear time dependent partial differential equations 
mainly based on deterministic consideration. The 
deterministic solutions only have a single set of 
output values for a given set of inputs and 
parameters. However, real world systems such as 
aquifers consist of heterogeneous formation of 
porous media, complex multifaceted boundaries 
and random distribution of parameters with 
irregular inputs (e.g. rainfall). These complexities 
of groundwater systems, therefore, cannot be 
accurately understood by deterministic description 
and need to be described in a stochastic sense by 
using stochastic differential equations, for example 
Unny (1989). After the pioneering work of Freeze 
(1975), a large number of studies have contributed 
to understand the probabilistic nature of the 
heterogeneous formation of the underlying aquifer 
parameters distribution.  
 
Kulasiri and Verwoerd (1999, 2002) developed a 
stochastic solute transport model (SSTM) 
assuming the velocity of solute as a fundamental 
stochastic variable; 

( , ) ( , ) ( , )v x t v x t x t= + ξ ,         (1) 

where ( , )v x t  = average velocity described by 
Darcy’s law, and ( , )x tξ  =  white noise correlated 
in space and - correlated in time. The main 

parameters of the model are the correlation length, 
b and the variance, 

δ

2σ . Different values of these 
parameters regulate the statistical nature of the 
computational solution. This model avoids use of 
the Fickian assumption that gives rise to the 
dispersion coefficient, D. The D proved to be scale 
dependent (Fetter, 1999).  
 
The objective of this paper is to estimate 
parameters of SSTM using a hybrid ANN 
approach to test the performance of the estimation 
method in dealing with stochastic data. Then 
estimates will be compared using a more 
conventional curve fitting technique. The ANN is 
implemented using the NeuroShell2 software.    

2. HYBRID ANN APPROACH 

Rajanayaka et al. (2002) developed a hybrid ANN 
method to solve the inverse problem in 
groundwater modelling. Initially, a Multi Layer 
Perceptron (MLP) network was developed and it 
was found that the network produced better results 
when the target range of the parameters is smaller. 
Therefore, a Self-Organising Map (SOM) 
(Kohonen, 1982) was used to identify the objective 
subrange of the parameter and then the MLP 
model was employed to obtain final estimates. The 
data for the ANN was obtained from a numerical 
model that was utilised to simulate the solute 
transport in saturated groundwater flow. The 
forward problem of the numerical model was 
solved to generate solute concentration data for a 
range of parameters. The input data was fed into a 
MLP ANN to train the network along with 
corresponding parameter values. A sufficiently 
trained ANN model was used to estimate hydraulic 
conductivity (single parameter), and hydraulic 
conductivity and longitudinal dispersion 
coefficient (two parameters). First, the approach 
was tested on synthetic data to identify its 
feasibility and robustness. Then an experimental 
dataset that was obtained from an artificial aquifer 
was used to validate the method. It was found that 
ANNs produce accurate estimates in the presence 
of uncertainty. However, ANN are able to produce 
accurate results only if the pattern of the dataset 
that is used to estimate parameters is similar to that 
of the training data. Therefore, it is important to 
adequately simulate the aquifer system in question 
by a large enough training dataset.  

2.1. Application to SSTM 

In this section, we applied the ANN hybrid 
approach (Rajanayaka et al., 2002) to estimate 
parameters of the Stochastic Solute Transport 
Model (SSTM). Since, SSTM consists of two 
parameters; variance ( σ ) and correlation length 
(b), we estimated both parameters simultaneously. 
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However, Rajanayaka et al. (2002) showed that the 
accuracy of the estimates was inversely 
proportional to the extent of the objective range. 
Thus it is necessary to identify reasonably smaller 
output ranges for both parameters. Additionally 
Rajanayaka and Kulasiri (2002) illustrated that the 
larger parameter values of SSTM represent higher 
random flows, especially  around 0.25. For that 
reason, we limited the parameter range for both 
parameters, and b, for an acceptable range 
between 0.0001 and 0.2.   

2σ

2σ

 
As the first step of the implementation process, we 
used SSTM to simulate a one-dimensional aquifer 
of 10 m in length. 800 data patterns for different 
combinations of σ  and b were generated. Every 
data pattern consists of 200 inputs for 10 various 
spatial locations of the aquifer for 20 time 
intervals. The same standard Wiener process was 
utilized for generation of all datasets. Initial 
conditions of concentration value of unit 1.0 at x = 
0.0 and exponentially distributed initial values for 
other spatial locations were considered. 
Throughout the simulation the same concentration 
(unit 1.0) was maintained at the upper end 
boundary. It was assumed that the mean velocity 
of the solute was 0.5 m/day. As mentioned above, 
limiting the objective range of the parameters to a 
smaller regime was significant to attain accurate 
approximations. Thus, Kohonen’s SOM was 
employed to cluster the data set into four 
categories. 
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Since, the dataset represents the stochastic 
behaviour of the flow, the time needed to classify 
the data into separate groups was much more than 
in the similar case of the deterministic advection – 
dispersion data used in Rajanayaka et al. (2002). In 
the present case, it was 32 minutes and 5 seconds 
using a 1 GHz personal computer. Randomly 
selected 80% of data was used for training the 
network and the rest for validation. However, the 
performance of the ANN model can be affected by 
the way the dataset is divided into different groups 
(Maier and Dandy, 1996). This outcome is mainly 
caused by ANN’s inability to extrapolate beyond 
the range of the data used for training. For that 
reason, the training and validation sets must be 
representative of the same population to obtain 
adequate generalization ability (Masters, 1993; 
Tokar and Johnson, 1999). We addressed this issue 
by manually adjusting the upper and lower bounds 
of the training model. Those limits were 
determined using upper and lower values of all 
three data samples: training, testing and validation. 
 
Distribution of the large dataset into four 
categories by using a SOM is shown in Figure 1. 
Comparing the performance of the deterministic 

data distribution given by Rajanayaka et al. (2002) 
(800 data into four categories of 201, 200, 197 and 
202), the results presented here failed to reach the 
same accuracy. However, notwithstanding the 
random nature of the current dataset, the SOM has 
clustered the data to an adequate degree of 
accuracy that may be sufficient for the problem at 
hand. 
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architectures available in NeuroShell2 were 
considered. After numerous attempts, it was found 
that the network model with ‘five layer standard 
connections’ (input, 3 hidden, and output layers) 
could produce the best trained model. Each hidden 
layer consisted of 30 neurons. Activation functions 
of linear <0, 1>, logistic, tanh, Gaussian and 
logistic were used for layers of input, hidden (3 
layers) and output, respectively. The default 
network parameters of NeuroShell2 were 
employed; learning rate = 0.1, momentum = 0.1, 
initial weight = 0.3. The stopping criterion was set 
to a minimum error of 0.000001. The network that 
produces best results on the test set is the one most 
capable of generalising and this was saved as the 
best network. Further, that procedure ensures that 
overtraining did not occur. All four networks 
reached the stopping condition in about 30 minutes 
in a 1 GHz personal computer with performance 
measurements shown in Table 1. 
 
Table 1. Performance measurements of trained 
ANN model for four different parameter ranges. 

R2 Mean absolute error Parameter 
range 2σ  b 2σ  b 

0.0001– 0.05 0.991 0.987 0.0 0.0 
0.05 – 0.1 0.991 0.987 0.0 0.0 
0.1 – 0.15 0.989 0.987 0.0 0.0 
0.15 – 0.2 0.972 0.977 0.0001 0.0001 

 
After the completion of successful training of each 
model, separate datasets were generated to test the 
prediction capability of the models. The same 
SSTM was employed to produce another dataset of 
441 data patterns for each parameter range. 
However, different standard Wiener process 
increments were used. In addition, initial and 
boundary conditions were adjusted up to ±5% by 
adding random values. Input data values of each 
dataset were then fed into the corresponding 
trained network and processed to obtain model 
predictions. Figure 2 illustrates the absolute error 
of estimated parameter , that ranges from 
0.0001 to 0.05. It shows that ANN model 
prediction is extremely satisfactory and that the 
average absolute error is approximately 0.04%.  
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Figure 2. Absolute error of estimated parameter 

, for the range of 0.0001 – 0.05. 2σ

A similar approach was applied to other parameter 
ranges as well. The precision of the estimates 
given by ANN models shrinks with highly 

heterogeneous data. As larger values of parameters 
indicate excessive stochastic flows, we can    
expect   the accuracy of the prediction to diminish 
for highly stochastic flows. Nonetheless, the 
average absolute error for the estimates for a range 
of 0.15 to 0.2 was approximately 5.5%, which may 
be acceptable for most of practical applications. 
 
The above prediction accuracy analyses of the 
ANN models were based on similar ranges for 
both parameters. However, in most practical 
circumstances we may have to associate with 
different values of parameters for σ  and b. Thus 
the robustness of the ANN methodology for 
different values of parameter regimes for two 
parameters was assessed. We generated two 
separate datasets for two extreme cases; (i) smaller 

2

2σ  ranges from 0.0001 to 0.05, and higher b 
ranges from 0.15 to 0.2 (ii) higher  ranges from 
0.15 to 0.2, and smaller b ranges from 0.0001 to 
0.05. A similar approach to that which was used 
for earlier investigations was employed to gauge 
the capability of the ANN model. Estimates reveal 
that the trained network has predicted the estimates 
with reasonable precision. In both cases the 
percentage average absolute error is approximately 
4%. 

2σ

3. CASE STUDY 

In this section, we applied the hybrid ANN inverse 
methodology with contaminant transport tests 
conducted at a large, confined, artificial aquifer at 
Lincoln University, Canterbury, New Zealand. A 
detailed description of the aquifer and transport 
experiments can be found in Kulasiri and 
Verwoerd (2002). 
 
Firstly, we utilized the known conditions such as 
initial and boundary conditions and hydraulic 
gradient to simulate the aquifer using SSTM. The 
initial concentration at x = 0 was 1.0 unit and it 
was reduced exponentially with time. Initial values 
of other spatial points were considered as zero. 
1681 data patterns were generated for different 
combinations of parameters of  and b. Single 
standard Wiener process increments were retained 
for every simulation run. Both parameters were 
varied between 0.0001 and 0.2.  

2σ

 
Generated data patterns were fed into Kohonen’s 
self-organizing map architecture to cluster them 
into four different groups. After classifying them 
with reasonable accuracy aquifer datasets were fed 
into the SOM model to identify relevant groups 
that the data resemble the most. We constructed 20 
different 1-D datasets to represent five different 
sets of sample wells along the aquifer at four 
levels. Concentration values of the aquifer were 
normalized to be able to weigh them against the 



SSTM data that was produced with unit initial 
concentration. In addition, we made an assumption 
that transverse dispersion of the aquifer was 
compensated by consideration of the stochastic 
flow. Initially a dataset closer to the middle of the 
aquifer was chosen for the estimation of 
parameters. The aquifer dataset had to be 
interpolated to produce missing data, and to 
fabricate uniform spatial and time grids. Having 
constructed an exact number of data for similar 
spatial and time intervals as for the original ANN 
model, the aquifer dataset was fed into the trained 
model. The processed results, as shown in Figure 
3, illustrated that the aquifer data fits into the first 
group of the original dataset (by numeric 1, and 
others 0). Then, the selected dataset was separated 
from the original larger set and trained a model for 
the smaller parameter range. Based on the above 
model selection, ‘five layer standard connections’ 
was utilized with the same activation functions, 
initial weights, momentum and learning rates, 
which were used in the previous section. 
 
 

 
Figure 3. Classification of aquifer dataset and 

estimates produced by trained ANN model. 

Following sufficient training (minimum error of 
the test set = 0.000001), the artificial aquifer 
dataset was fed into the ANN model to estimate 
parameters. The estimates that were produced by 
the model are given in Figure 3; σ  = 0.0136 and b 
= 0.0166. We conducted a similar procedure for all 
the flow paths of the artificial aquifer to further 
test the robustness of the methodology. The 
estimates indicate that although the artificial 
aquifer is reasonably heterogeneous, the ANN 
model estimates the parameters with a reasonable 
accuracy with average values of  = 0.01256 and  
b = 0.0141.  

2

2σ

4. CURVE FITTING  

In this section we used a more conventional 
technique, namely curve fitting, to alternatively 
estimate parameters of the Lincoln University 
artificial aquifer. Even though the curve fitting 
technique is to some extent a primitive and time 
consuming approach, it gives accurate estimates 
provided a correct procedure is followed. Since, 
the present stochastic model is a one-dimensional 

model, we experimented in directly relating to one-
dimension solute concentration profiles of the 
aquifer. However, as one can assume, the actual 
aquifer is subjected to transverse dispersion. 
Therefore, consideration of mere one-dimensional 
deterministic flow is not sufficiently accurate. 
Hence, we employed the following methodology 
to approximate the aquifer parameters.   
 
First, we selected spatial coordinates closer to the 
middle of the aquifer. Then, we developed a two-
dimensional deterministic advection-dispersion 
transport model and obtained corresponding 
concentration values of the model that are similar 
to selected spatial locations of the aquifer. As 
given by Fetter (1999), based on plausible 
arguments we assumed that the transverse 
dispersion coefficient is 10% of the longitudinal 
dispersion. A mean velocity of 0.5 m/day was 
considered. Afterward, the profiles of both the 
aquifer and the deterministic model were plotted 
on a one axis system to compare their similarity. 
This curve fitting technique was carried out in 
association with a trial and error exercise to 
determine the most suitable fitting of the curves by 
changing dispersion coefficients of the 
deterministic model.  
 
After investigating many combinations of 
parameters by trial and error, it was found that the 
closest fit could be obtained by a longitudinal 
dispersion coefficient of 0.15 m2/day (Figure 4). 
For simplicity, concentration values of the aquifer 
were normalized. 
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Figure 4.  Concentration profile of trial and error 
curve fit for D = 0.15 m2/day of advection 

dispersion model of aquifer data. 
 

Subsequently, we developed a one-dimensional 
deterministic advection-dispersion model by using 
the   longitudinal   dispersion coefficient obtained 
from the two-dimensional comparison. Then we 
used a similar curve fitting technique to that used 
above, with the 1-D deterministic model and 1-D 
stochastic model. Investigation of curve fitting for 
different parameter combinations was conducted 
for the same Wiener process. After numerous 
attempts it was found that the parameter 
combination of 2σ = 0.01 and b = 0.01 closely 
represents the aquifer (Figure 5). Having 
determined the appropriate parameters of SSTM 
that  simulate  the Lincoln University aquifer at the 
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Figure 5.  Concentration profiles of deterministic 
advection-dispersion model (D = 0.15 m2/day and 

SSTM with = 0.01 and b = 0.01. 
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