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Abstract : Recently, Genetic Algorithm (GA) has proven to be successful and efficient in identifying the 
optimal parameters for water resource modelling applications. However, in order to produce efficient and 
robust solutions, proper selection of GA operators is necessary for the application, before conducting the model 
parameter optimisation. General guidelines are available for standard GA optimisation applications. However, 
there is no specific guidance available for selecting GA operators for urban drainage model parameter 
optimisation. Therefore, the sensitivity of these operators are analysed through numerical experiments by 
repetitive simulation considering one GA operator at a time, by integrating GA and urban drainage modelling 
software. It was found that models with a small number of parameters (i.e. two or less) could be optimised with 
any GA operator set in urban drainage modelling. However, the proper selection of GA operators is vital to the 
convergence of the optimum model parameters, for large number of parameters (i.e. five or more) in urban 
drainage modelling.  
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1. INTRODUCTION 

Management of stormwater runoff from urban 
catchments has become an increasingly important 
environmental issue and stormwater drainage is a 
major part of this overall stormwater management. 
The development of efficient stormwater drainage 
systems is still necessary due to continued urban 
development. The most practical way of designing 
these systems is by the application of mathematical 
models, which consider complex hydrological (eg. 
rainfall, infiltration, overland flow, evaporation) 
and hydraulic (eg. pipe and open channel flow) 
processes of urban areas. 
 
The accuracy of these models depends on the 
correct selection of the model parameter values. 
Some of these values can be physically measured, 
but other parameters such as depression storage, 
flow roughness etc. are difficult to measure. 
Therefore, these parameters, which are impossible 
or difficult to measure physically, have to be 
estimated through model calibration. The model 
calibration is done through an iterative process by 
comparing model predictions with observations, 
until the two sets match with each other within a 
reasonable accuracy. 
 
There are several methods available to calibrate 
mathematical models ranging from trial and error 
to optimisation methods. Traditionally, the model 
calibration is done through trial and error. With this 

method, the model parameters are estimated by 
experienced modellers starting with educated 
guesses and refining these guesses by comparing 
observed and modelled hydrographs. However, this 
method is subjective, time consuming and can also 
miss the optimum parameter set. On the other 
hand, computer based automatic optimisation 
methods have proven to be robust and efficient. In 
this project, one of the most popular automatic 
calibration optimisation methods known as genetic 
algorithm (GA) is used to calibrate the urban 
drainage models. Even though the GA has been 
recognized as a robust optimisation method for 
estimating model parameters in many fields, it has 
not been used widely for urban drainage models.  
 
GA operators, such as parameter representation, 
population size, selection methods and crossover 
and mutation rates play an important role on the 
convergence of the optimum model parameter set. 
Davis (1991) reported that the optimum GA 
operator set varies according to the application. 
Franchini and Geleati (1997) studied the effects of 
GA operators in detail in their rainfall-runoff 
model calibration study and reported that a robust 
GA operator range was adequate, as it did not have 
any significant effect on the optimum model 
parameter set. Wardlaw and Sharif (1999) and Ng 
(2001) conducted comprehensive GA operator 
studies in their optimal reservoir system operation 
and water quality model parameter optimisation 



studies respectively, and arrived at different 
optimum GA operators. The above studies show 
that there are no clear conclusions regarding the 
optimum GA operators to be used in model 
parameter optimisation. Therefore, a detailed study 
was conducted to determine the optimum GA 
operators before attempting the model parameter 
optimisation in urban drainage modelling. 
 
 
2.  GENETIC ALGORITHM (GA) 

GA is a widely used probabilistic search method 
originally developed by Holland (1975) and later 
refined by many others. It is a robust technique and 
uses a computer based iterative process that 
employs the mechanics of natural selection and 
natural genetics to select the optimum parameter 
set for the given problem.  
 
The genetic algorithm vocabulary is adopted from 
natural genetics. The model parameter set is 
defined as a ‘chromosome’, while each parameter 
is known as a ‘gene’. The representation or coding 
of chromosomes has a large impact on search 
performance, as the optimisation is performed on 
this representation. There are two main types of 
parameter coding methods available, which are bit 
string coding and real-value parameter coding. In 
real-value coding each parameter is represented by 
its real-value. There are two types of bit string 
coding methods available, namely binary and gray 
coding, which use similar concepts. In binary 
coding, each parameter is encoded into strings with 
binary digits (i.e. 0 and 1) and arranged linearly to 
form a chromosome. Gray coding, which is an 
enhancement of binary coding, increases the search 
performance as it avoids the ‘Hamming Cliffs’ 
problem associated with binary coding (Ng, 2001). 
The bit string coding is widely used by GA 
researchers because of its simplicity and also GA 
theory was initially developed on this basis. In the 
bit string coding method, the genes present in the 
chromosome can be represented with varying string 
lengths (i.e. number of bits) according to their 
parameter range and required precision of 
parameters.  However, some of the recent research 
work reported that real-value coding is superior to 
bit string coding (eg. Wardlaw and Sharif, 1999). 
 
Each GA run consists of a number of successive 
populations of chromosomes, which are possible 
solutions (or parameter sets) of the given problem. 
Population size is the number of chromosomes 
present in a population. At the start of the GA 
optimisation, the user has to define the population 
size and the number of model parameters that need 
to be optimised and their ranges. The initial 
population is then generated at random or using a 
heuristic technique. The latter method is based on 
prior knowledge of the parameters and hence 

provides a good initial estimate and rapid 
convergence. The advantage of the random method 
is that it prevents premature convergence to an 
incorrect solution due to insufficient variability in 
the initial population. A user-defined objective 
function is used to evaluate each chromosome in 
the population.  These objective functions of the 
chromosomes indicate the suitability (or fitness) of 
the parameter set for the given problem. After 
computing the objective function for each 
chromosome of the current population, GA 
operators such as selection, crossover and mutation 
are used to generate the next population. Several 
generations are considered in the GA process, until 
the user defined termination condition is reached. 
 
There are several selection methods available, 
namely proportionate, ranking and tournament 
selections, which are described in detail in 
http://www.geatbx.com/docu/algselct.html. The 
selection method determines which chromosomes 
of the current population participate in generating 
the next population according to their fitness. This 
process ensures a higher chance of fitter 
chromosomes passing their genes to the next 
generation. Once the appropriate chromosomes are 
selected, they are used to create new chromosomes 
for the next population by randomly combining 
two chromosomes, which is called the crossover 
process. There are several crossover methods 
available, namely single point, multi point, uniform 
and shuffle crossover. The “elitist” selection option 
ensures the fittest chromosome from one 
population is propagated to the next population 
without any disturbance. The crossover rate 
determines the probability that a pair of 
chromosomes will be subject to the crossover 
process.  A high crossover rate is used to 
encourage good mixing of the chromosomes.  
 
The mutation operator randomly modifies the 
chromosomes (eg. in bit string representation ‘0’ to 
‘1’ and visa versa) to introduce diversity to the 
population. A large mutation rate increases the 
probability of destroying good chromosomes, but 
will prevent premature convergence.  
 
3. SELECTION OF GA OPERATORS FOR 

USE IN XP-UDD DRAINAGE MODEL  
 

3.1.  XP-UDD Urban Drainage Model 
 
There are several computer software packages 
available for urban catchment modelling. Most of 
these software tools use the same equations for 
modelling hydrological and hydraulic processes of 
urban catchments. XP-UDD (XP Software 2000, 
http://www.xpsoftware.com.au /hydraulic.html) is 
an improved version of SWMM (US Environment 
Protection Agency, 1992) and its input and output 

http://www.geatbx.com/docu/algselct.html
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files are in ASCII format, which can be accessed by 
the GA software or other external software tools. 
Therefore, XP-UDD was used in this study. 
 
In XP-UDD, the urban catchment is divided into 
two significant sub-areas namely, impervious and 
pervious areas. The impervious area includes road 
surfaces, roofs and other man-made hard surfaces. 
The pervious area includes bare surfaces, porous 
pavements, grass courts and lawns. During ‘small’ 
storm events, runoff is generally generated only 
from the impervious area after filling its depression 
storage, since rain falling on the pervious areas 
infiltrates into the soil. However, during ‘large’ 
storm events, pervious areas contribute to runoff, in 
addition to impervious areas.  
 
The Horton’s infiltration equation was selected in 
this study to model infiltration in pervious areas, as 
the parameters of this equation can be determined 
through soil infiltration tests (but refined during 
calibration to allow for heterogeneity of the soil). 
Seven model parameters were identified for 
calibration of the XP-UDD model, two related to 
the impervious areas (i.e. percentage of the 
impervious area -%A and the depression storage - 
DSi ) and the other five related to the pervious areas 
(i.e. depression storage - DSp, overland flow 
roughness of the pervious areas - np and the three 
Horton’s soil infiltration parameters - fo, fc and k).  
 
A typical urban drainage catchment (i.e. the ‘Kew’ 
catchment, in Melbourne metropolitan area in 
Victoria, Australia) and two hypothetical storm 
events (i.e. ‘small’ and ‘large’) were considered in 
optimising GA operators in this study. The 
catchment has an area of 18ha. The ‘small’ storm 
considered was the design storm, which had an 
Annual Recurrence Interval (ARI) of 1 year and 
storm duration of 30 minutes. This storm produced 
runoff only from the impervious areas and was 
used to calibrate the two impervious area 
parameters. The ‘large’ storm, which had an ARI of 
100 years and 30 minutes duration, generated 
runoff from both impervious and pervious areas 
and was used to calibrate the remaining five 
pervious area parameters after fixing the two 
impervious area parameters obtained from the 
‘small’ event. Although it is beneficial to consider 
several storms, it is not feasible to perform an 
analysis such as this, because of repetitive GA runs 
and associated high computer time. Typical model 
parameter values (as given in Section 3.3.e) were 
assumed to generate the hydrographs due to these 
two storm events. These hydrographs were 
considered as the observed hydrographs in 
optimising GA operators and its assumed 
parameters as the actual parameters.  
 
Several public domain GA source codes have been 
developed in Fortran, C/C++, Java and other 

programming languages in the past, and can be 
found at http://www.aic.nrl.navy.mil/galist/src/#C. 
GENESIS GA software has been successfully used 
in the past by many researchers (eg. Liong et al. 
1995 and Ng 2001) and therefore was used in this 
study. A computer program was developed to link 
the GENESIS and XP-UDD software tools. 
 
3.2. Methodology Used in Optimising GA 

Operators 
 

Binary and gray coding options are available in 
GENESIS for parameter representation. Gray 
coding was used in this study, as it is an extension 
of binary coding. Furthermore, the two-point 
crossover type was used, as it was the only 
crossover method available in GENESIS.  
 
To study the effects of GA operators in the XP-
UDD model, population size, selection type and 
crossover and mutation rates were varied one at a 
time, keeping all other operators constant. At the 
start of these studies, the crossover and mutation 
rates were kept at 0.6 and 0.001 and the 
proportionate selection method was used, which 
are the default values in GENESIS. The objective 
function used in this study was the minimisation of 
the sum of square of difference between computed 
and observed hydrograph ordinates as it had been 
widely used in many previous studies (eg. Liong et 
al. 1995) and implicitly allows other important 
features of the hydrographs such as peak, time to 
peak and volume to be matched. Population size 
and number of generations are related by the total 
number of simulations in one GA run, and 
therefore these two were studied together. 
 
a) Population Size  
 
Based on the previous work of Franchini and 
Geleati (1997), population sizes of 75, 100, 125 
and 200 were initially investigated for both 
impervious and pervious area studies with 7500 
simulations. Based on these results further 
investigations were done for population sizes of 10, 
25, 50 and 50, 150, 300, 500 for impervious area 
and pervious area parameter studies respectively. 
The optimum population size and the number of 
generations were then selected from these 
investigations by repetitive GA runs. 
 
b) Number of Optimum Parameter Sets to be 
       Considered From The Final Generation 
 
In a typical GA run, there could be several equally 
good parameter sets giving the best objective 
function in the final generation. The objective 
functions of these sets may differ only by a small 
margin, though there could be significant 
differences in their parameters. Therefore, it is not 
appropriate to select a single parameter set from 

http://www.aic.nrl.navy.mil/galist/src/


the final generation. Franchini and Galeati (1997) 
determined the mean value of the best 20-
parameter sets based on objective functions in their 
rainfall runoff model. Wang (1991) and Liong et al. 
(1995) selected a single parameter set and Ng 
(2001) selected the mean value of the best 10 
parameter sets based on objective function in their 
applications. Therefore, the results obtained from 
the best GA runs were analyzed, to determine how 
many parameter sets need to be considered from 
the final generation to determine the optimum 
parameter set. 
 
c) String Length  
 
In bit string representation, string length of the 
gene is estimated based on parameter range and 
required precision of coding, as stated in Section 2. 
Several population sizes were considered with three 
different parameter ranges, to investigate the 
impact of parameter range on parameter 
convergence, keeping the precision of the 
parameter values at the required level. These 
population sizes were 25, 50, 75, 100 and 100, 125, 
150 for impervious and pervious area parameter 
studies, respectively. 
  
d) Selection Type 
 
The proportionate selection and the linear ranking 
selection method options are only available in 
GENESIS. Therefore, the effects of these two 
methods on the convergence to the optimum model 
parameter set were investigated. Each selection 
method was studied for crossover rates 0.6 and 0.9 
with mutation rates 0.001 and 0.01. These figures 
were the boundaries of the optimum GA operator 
ranges defined in the literature. 
 
e) Crossover and Mutation Rate 
 
In this study, the effects of crossover rate (XOR) 
were first investigated for impervious and pervious 
area parameters studies. For both studies, the 
crossover rates ranged from 0.1 to 1, with steps of 
0.1 (i.e. 10 crossover rates) were initially 
investigated, keeping mutation rate at 0.001. Then 
these results were analysed to produce a narrow 
range of crossover rates. This narrow range was 
then used with different mutation rates (MR), to 
produce suitable crossover and mutation rates for 
the urban drainage model calibration. In this study, 
crossover and mutation rates were studied together, 
as they together determined the convergence.  
 
3.3. Results  
  
(a) Population Size 
 
Figure 1 shows the results obtained for optimising 
two impervious area parameters with population 

sizes of 25, 50, 75 and. Population size 10 has not 
converged to the actual model parameters at all, 
since it has not enough variation in parameters 
present. As can be seen from Figure 1, all the 
parameter sets converged very quickly with a 
population size of 25 within 1125 simulations (45 
generations). However, other population sizes were 
not able to give similar results with the same 
number of generations.  

0
20
40
60

80
100
120

0 1250 2500 3750 5000 6250 7500
No of Simulations

Ze
ro

 O
bj

ec
tiv

e 
Fu

nc
tio

n 
pe

rc
en

ta
ge

Pop 25
Pop 50
Pop 75
Pop 100

Figure 1.  Number of simulations vs. Number of 
zero objective functions as a % of population (for 
impervious area parameters)  
 
Figure 2 was produced to illustrate the results of 
minimum, mean of minimum 5 and mean of 
minimum 10 objective functions in the final 
generation, for the pervious area parameter study.  
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Figure 2.  Objective Function value (liters/sec)2 vs. 
Population size (for pervious area parameters) 
 
Although it can be seen from Figure 2 that the 
population sizes of 50, 75 and 100 were equally 
good in terms of objective function, only the 
population size of 100 converged all five model 
parameters accurately.  Based on the above results, 
the population sizes of 25 (with 1200 simulations) 
and 100 (with 7500 simulations) were identified as 
the optimum population sizes (and number of 
simulations) for optimising impervious and 
pervious area parameters respectively in this study. 
These results were used in the following sections, 
except in  (c). 
 
b) Number of Optimum Parameter Sets to be 
       Considered From The Final Generation 
 
As stated earlier, all parameter sets in the 
impervious area parameter study reached the actual 



Figure 4 shows an example of the results obtained 
for a population size of 25 in the impervious area 
study. (Similar results were obtained for other 
population sizes in both studies.) It can be seen 
from Figure 4 that the longer the string length (i.e. 
larger parameter range), the longer time was 
required for convergence, considering the same 
precisions in parameter values. 

values in the final generation and therefore need 
not to be studied. The remaining five pervious area 
parameters were studied and plots were made of 
these parameters against the number of parameter 
sets taken from the best results found, which was 
the final generation of the population size of 100. 
Figure 3 illustrates an example of the results 
obtained for fc (whose actual parameter was 10 
mm/h).   

d) Selection Type 
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It was observed that the populations of both 
impervious and pervious area studies produced 
minimum objective function values slightly faster 
when the linear ranking method was used than 
when the proportionate selection method was used. 
However, the pervious area model parameters did 
not converge to the actual values with the linear 
ranking method. Therefore, the proportionate 
selection method was used for the rest of the study. 
  
 Figure 3. Number of parameter sets vs. saturated 

soil infiltration rate (i.e. fc) e) Crossover and Mutation Rates 
  
In the impervious area study, 25 chromosomes of 
the final population were able to converge to zero 
objective function (i.e. calibrated parameter set 
reached exactly as the actual or assumed parameter 
set) in all ten runs (crossover 0.1 to 1). However, in 
the pervious area study, the crossover rate 0.3 and 
between 0.5 to 1 only gave the minimum objective 
function values. When the calibrated model 
parameters obtained from these GA runs and the 
actual values were compared, it was found only the 
actual values corresponding to the crossover rates 
from 0.6 - 0.9 were matched closely with each 
other. Therefore, the conclusion was reached that 
the crossover rate ranging from 0.6 – 0.9 needs to 
be considered for further study with mutation rates 
varying from 0.001 to 0.1. The results obtained for 
five model parameters (based on mean of 5 
minimum objective functions) are shown in Table 
1. The actual values used for np, DSP, fo, fc and k 
are 0.03, 3mm, 100mm/h, 10mm/h and 0.001 1/sec 
respectively.  

These plots illustrate the minimum, mean and 
maximum parameter values against the number of 
parameter sets (i.e. based on the minimum 
objective functions) taken from the final 
generation. It was found that number of parameter 
sets beyond six deviated significantly from the 
actual parameter values. Therefore, the mean of the 
best five parameter sets based on objective function 
value from the final generation was considered as 
the value of the optimum parameter set for the 
pervious area study. 
 
c) String Length 
 
Three different string lengths (which implicitly 
account for the parameter range and precision) 
were assumed for both studies to study the effect of 
the string length on algorithm convergence. The 
computed string lengths (SL) of the chromosomes 
were 10, 16, 20 and 38, 48, 58 in impervious and 
pervious area parameter studies respectively.  

 
It can be seen from the Table 1 that the crossover 
rate of 0.6 with 0.001 mutation rate gave the best 
result based on a comparison of GA-optimised and 
actual parameter values for this application. These 
are the default values of GENESIS and therefore 
they are recommended for use in XP-UDD model 
parameter calibration. The other acceptable 
crossover and mutation rates (i.e. based on 
comparison of GA-optimised and actual parameter 
values) are shown in bold type in Table 1. 
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   Figure 4. Number of simulations vs. Number of 
zero objective functions for population size of 25   

  



Table 1. Pervious area model parameter values for 
different crossover and mutation rates 
 
XOR MR np DSp  fo fc k  
0.6 0.001 0.029 3.1 99.4 10.0 0.001 

 0.002 0.034 2.68 107 11.8 0.0012
 0.004 0.026 2.76 112 13.6 0.0013
 0.006 0.028 3.18 99.4 13.2 0.0011
 0.008 0.030 3.02 104 13.4 0.0012
 0.01 0.032 2.72 107 11.6 0.001 
 0.05 0.023 2.7 109 12.6 0.001 
 0.1 0.039 2.52 106 10.2 0.0011

0.7 0.001 0.029 2.2 120 14.0 0.0014
 0.002 0.024 3.1 111 12.8 0.0013
 0.004 0.060 2.42 107 11.8 0.0012
 0.007 0.034 2.32 115 14.0 0.0013
 0.008 0.029 2.84 110 13.2 0.0013
 0.01 0.029 3.02 102 13.2 0.0012
 0.05 0.039 2.52 113 9.6 0.0012
 0.1 0.034 2.98 95.8 11.2 0.001 

0.8 0.001 0.031 3.12 97.8 10.6 0.001 
 0.002 0.028 3 102 12.4 0.0011
 0.004 0.034 1.98 121 14.8 0.0014
 0.006 0.027 2.86 107 12.6 0.0012
 0.008 0.033 2.96 100 12.3 0.0011
 0.01 0.035 2.78 101 13.0 0.0011
 0.05 0.027 2.34 120 13.6 0.001 
 0.1 0.050 2.46 107 12.8 0.0013

0.9 0.001 0.028 3.02 103 13.4 0.0011
 0.002 0.031 2.84 104 12.8 0.001 
 0.005 0.038 3.1 98.2 11.8 0.0011
 0.008 0.030 3.26 99.4 12.4 0.0011
 0.01 0.030 2.96 102 10.4 0.0011
 0.05 0.033 3.6 92.6 10.2 0.0009
 0.1 0.031 2.92 105 9.8 0.001 

 
 
4. SUMMARY AND CONCLUSIONS 
 
Urban drainage models are widely used in urban 
stormwater planning and management. In order to 
use these models effectively, it is necessary to 
calibrate them. Optimisation methods are preferred 
to the traditional trial and error methods for 
calibrating such models. Genetic Algorithms (GA) 
are one of the possible optimisation methods, 
which is gaining popularity in water resource 
applications. Before attempting to calibrate urban 
drainage models using GA, it is necessary to obtain 
the appropriate GA operators for the study, since 
there is no guidance available for GA operators to 
be used in urban drainage modelling. 
 
It was found in this study that GA operators were 
sensitive to the number of model parameters that 
needs to be optimised in the application. If the 
number of parameters to be optimised was small 
(i.e. 2 or less), GA operators did not play an 
important role in converging to the optimum model 
parameter set and therefore general GA operators 

recommended in literature can be used. 
Furthermore, small population sizes (i.e. between 
25 – 50) are very efficient to use for small number 
of parameter optimisation in urban drainage 
modelling. However, for models with large number 
of parameters (5 or more), GA operators played an 
important role in converging to the optimum 
parameter set. In this study, gray coding, 
population size of 100, proportionate selection, 
two-point crossover method, elitism, crossover rate 
of 0.6 and mutation rate of 0.001 gave the best 
results for the pervious area parameters, and 
therefore they are recommended for large 
parameter optimisation in urban drainage models. 
Furthermore, efficiency of the parameter 
convergence can be improved by minimising the 
parameter range and precision of the coding. 
 
5. REFERENCES 
 
Davis, L.   Handbook of genetic algorithm, Van 

Nostrand      Reinhold, New York, 1991. 
 

Franchini, M. and Galeati, M., Comparing several 
genetic algorithm scheme for the 
calibration of conceptual rainfall-runoff 
models, Journal of Hydrological 
Sciences, 42(3), 357-379, 1997. 
 

Holland, J. Adaptation in   natural and    artificial  
systems, Ann Arbor, The University of 
Michigan Press, USA, 1975. 
 

Liong, S.Y., Chan, W.T. and Shreeram, J. Peak –  
flow forecasting with genetic algorithm 
and SWMM, Journal of Hydraulic 
Engineering, 121(8), 613-617, 1995. 
 

Ng, A.W.  Parameter optimisation of river   water 
quality models using genetic algorithms, 
Ph.D. Thesis, School of the Built 
Environment, Victoria University, 
Australia, 2001. 
 

U.S. Environmental Protection Agency  (USEPA),  
Stormwater management model 
(SWMM), Version 4, User’s Manual, 
Environmental Research Laboratory, 
Office of Research and Development, 
Athens, Georgia, 1992. 
 

Wang, Q.J.  The    Genetic    algorithm    and     its  
application to calibrating conceptual 
rainfall-runoff models, Water Resources 
Research, 27(9), 2467-2471, 1991. 
 

Wardlaw, R.  and Sharif, M., Evaluation of genetic 
algorithm for optimum reservoir system 
operation, Journal of Water Resources 
Planning and Management, 125(1), 
Jan/Feb, 1999. 


	Keywords: Genetic Algorithm; Urban Drainage; Parameter Optimisation; Modelling



