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Abstract: The birth-death process is a familiar tool in modelling populations which are subject to demographic
stochasticity. However, many populations are also subject to one or more forms of local ‘catastrophe’ (a term
usually taken to mean any population decrease of size greater than one). Natural disasters, such as epidemics,
and migration to other populations, are all examples of local catastrophes. The birth, death and catastrophe
process is an extension of the birth-death process that incorporates the possibility of reductions in population of
arbitrary size. We will consider a general form of this model, in which the transition rates are allowed to depend
on the current population size in a completely arbitrary matter. The linear case, where the transition rates are
proportional to current population size, has been studied extensively. In particular, extinction probabilities,
the expected time to extinction (persistence time) and the distribution of the population size conditional on
non-extinction (the quasi-stationary distribution) have been evaluated explicitly. However, whilst all of these
characteristics are of interest in the modelling and management of populations, processes with linear rate
coefficients represent only a very limited class of models, and indeed it is difficult to imagine instances where
catastrophe events would occur at a rate proportional to the population size. Our model addresses this difficulty
by allowing for a wider range of catastrophic events. Despite this generalisation, explicit expressions can still
be found for persistence times.

Keywords: Hitting times; Extinction times; Population processes

1. INTRODUCTION

Accounting for catastrophic events has become an
important component in stochastic population mod-
elling, particularly in ecological applications, but
also in an array of other fields, including economics,
chemistry and telecommunications. In the context
of population processes, catastrophes are sudden de-
clines in population, typically of a size greater than
a single individual. According to Shaffer (1981)
and others, such catastrophes are one of the primary
sources of variation in the abundance of species.
Mangel and Tier (1993), for example, discuss the
use of birth, death and catastrophe processes in
modelling the number of occupied habitat patches in
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a metapopulation. See Shafer (2001) for a review of
the significance of catastrophes in ecological mod-
elling.

Of primary importance in most applications is the
effect of catastrophes on the persistence of a popu-
lation, and in particular on the expected time to ex-
tinction. Recent work, beginning with Brockwell, et
al. (1982), discusses extinction probabilities, condi-
tions for certain extinction and expected extinction
times, in a variety of different cases. Here, we ex-
amine a general birth, death and catastrophe model
that permits an entirely arbitrary dependence of the
transition rates on the current population size, as
well as an arbitrary (but constant) jump size distri-
bution. Our main result is a theorem giving an ex-
plicit expression for the expected extinction time for



processes that conform to this model. We illustrate
our result with several examples.

2. THE MODEL

Markov chains are the simplest mathematical mod-
els for random phenomena that evolve over time.
Their structure is sufficiently simple that one can
say a great deal about their behaviour, yet, at the
same time, the class of Markov chains is rich
enough to serve in many applications. Markov
chains have proved particularly effective in biologi-
cal contexts. Here we shall assume thatX(t) is the
number in the population at timet, and suppose that
(X(t), t ≥ 0) is a continuous-time Markov chain
taking values inS = {0, 1, . . . }. Let fi(> 0) be
the rate at which the population size changes when
there arei individuals present, and suppose that,
when a change occurs, it is a birth with probabil-
ity a(> 0) or catastrophe of sizek (the removal of
k individuals) with probabilitydk, k ≥ 1. (Simple
death events are to be interpretted as catastrophes of
size 1.) Assume thatdk > 0 for at least onek ≥ 1
and thata +

∑
k≥1 dk = 1. Thus, the process has

transition ratesQ given by

qij =



fi
∑
k≥i dk, j = 0, i ≥ 1,

fidi−j , j = 1, 2, . . . i− 1, i ≥ 2,
−fi, j = i, i ≥ 0,
fia j = i+ 1, i ≥ 0,
0, otherwise.

(1)

Notice, in particular, thatq0j = 0, j ≥ 0, and that
qi0 > 0 for at least onei ≥ 1. Thus, the sole absorb-
ing state0, corresponding to population extinction,
is accessible from{1, 2, . . . } (an irreducible class).

The special casefi = ρi, where ρ(> 0) is a
per-capita transition rate, was studied by Brockwell
(1985), Pakes (1987) and Pollett (2001). Brock-
well’s model requires that the rate at which catas-
trophes occur is proportional to the number of in-
dividuals present (as is the birth rate). Such a rela-
tionship would be appropriate, for example, in situ-
ations where each individual in the population trig-
gers catastrophic epidemics at a certain rate. In con-
trast, models of the general form (1) may provide
a suitable approximation to the behaviour of popu-
lations (or metapopulations) that are evenly spread
across their environment, and that are subject to ‘lo-
calised’ catastrophes. If we define a localised catas-
trophe to be one that affects only nearby members
of a population, such catastrophes will often have
size distributions that are indeed independent of the
population size, and will not typically affect the en-
tire population, except when the population is small.
Our purpose here is to evaluate the expected time

to extinction for this general model, thus extending
Brockwell’s results for the linear case.

Whilst our model is quite general, it does have lim-
itations. Firstly, it is frequently useful to separate
death and catastrophe events, and to assign different
rate functions to births, deaths and catastrophes, as
in Mangel and Tier (1993) (note that in that work,
the state of the process is the number of occupied
patches in a metapopulation). An important special
case, which we are presently studying, hasqij = λi,
for j = i − 1 and i ≥ 1, andqij = ρdi−j , for
j = 1, . . . , i − 1 andi ≥ 2, so that deaths occur at
per-capita rateλ(> 0), while catastrophes occur at
points of Poisson process with rateρ(> 0), indepen-
dent of the population size. Another drawback of
the present model is that the catastrophe size distri-
bution does not depend on the number of individuals
present. For example, it rules out two special cases.
The first, and most important, describes catastrophic
events that affect each and every individual in the
population, and each individual is removed indepen-
dently with some fixed probabilityp. Thus, when
there arei individuals present, the size of a catastro-
phe has a binomialB(i, p) distribution. The second
case is where all catastrophe sizes are equally likely,
so that the catastrophe size has a uniform distribu-
tion on the set{1, 2, . . . , i}; uniform catastrophes
are not so relevant in biological applications. Both
cases have been discussed in previous mathematical
analyses; see, for example, Brockwell, et al. (1982).

A final important aspect of the model relates to ‘to-
tal catastrophes’, events that wipe out the popula-
tion completely. The number of deaths attributed to
a catastrophe is always limited by the current pop-
ulation, since the size of a population can never be
negative. In other words, while a certain severity
of catastrophe might be just enough to wipe out
a population, exactly the same effect (extinction)
would be produced by a catastrophe that was, say,
twice as severe. It is a feature of our model that
these ‘larger-than-population-size’ catastrophes still
contribute to the rate of total catastrophes. No-
tice from (1) that total catastrophes occur at rate
qi0 = fi

∑
k≥i dk when the population size isi,

which is the the rate coefficientfi multiplied by the
probability of a catastrophe of a size greater than or
equal to the current population. In this way, catas-
trophes that are more than sufficient to wipe out a
population are still possible, and contribute to pre-
cisely the event that the population jumps directly
to zero.

3. EXTINCTION PROBABILITIES

The probability of extinction does not depend on
the event rates(fi, i ≥ 1), because the jump chain
(the discrete-time chain that records the sequence



of states visited) is the same in all cases. It was
shown by Pakes (1987) that the probability of ex-
tinction αi, starting withi individuals, is 1 for all
i ≥ 1 if and only if the driftD (drift awayfrom 0),
given by

D = a−
∑
i≥1

idi = 1−
∑
i≥1

(i+ 1)di,

is less than or equal to 0. Note that the process is
said to besubcritical, critical or supercritical ac-
cording asD < 0, D = 0 orD > 0 (whereD sat-
isfies−∞ ≤ D ≤ 1). In the latter case extinction
is of course still possible, and the extinction proba-
bilities can be expressed in terms of the probability
generating function

d(s) = a+
∑
i≥1

dis
i+1, |s| < 1. (2)

It follows from Theorem 4 of Ezhov and Reshetnyak
(1983) (see also Pakes (1987)) that, whenD > 0,∑

i≥1

(1− αi)si =
Ds

d(s)− s
.

Thus, writingb(s) = d(s)− s, we see that∑
i≥1

αis
i−1 =

1
1− s

− D

b(s)
. (3)

It is interesting to note thatαi tends to 0 asi tends
to∞; roughly speaking, the larger the initial popu-
lation the less likely the population is to become ex-
tinct (in the supercritical case). However, as Pakes
(1987) notes, the convergence ofαi to 0 can be very
slow. For example, it is easy to show that

∑
i≥1 αi

is finite (and henceαi decays very quickly) if and
only if thevarianceof the catastrophe size distribu-
tion is finite.

4. POPULATION EXPLOSIONS

One interesting aspect of the present model is that
the process may explode (that is, the population size
may reach infinity in afinite time). Of course this
can only occur in the supercritical case, for as we
have already seen, the process hits 0 with probabil-
ity 1 in the subcritical and critical cases.

It is easy to exhibit explosive behaviour, for imagine
that there is no catastrophe component in the model.
We obtain the pure-birth process with birth rates
qi,i+1 = fia, and this is well known to be explosive
if and only if

∑
i≥1 gi < ∞, wheregi = 1/fi. If

death transitions are included, that is,qi,i−1 = fib,
wherea+ b = 1, then the resulting birth-death pro-
cess is explosive if and only ifa > b (supercritical)
and

∑
i≥1 gi < ∞ (apply Theorem 3.2.2 of An-

derson (1991)). It might therefore be conjectured

that the general birth, death and catastrophe pro-
cess is explosive if and only if it is supercritical and∑
i≥1 gi < ∞. Using the results of Yan and Chen

(1986), we have established that this is indeed the
case, but we will not give details here.

5. EXPECTED EXTINCTION TIMES

In this section we shall evaluate the expected time to
extinction with initial populationi. We shall restrict
our attention to the subcritical case, where extinc-
tion occurs with probability 1.

For a general Markov chain with transition rates
Q = (qij , i, j ∈ S), whose state space consists
of an irreducible class{1, 2, . . . } and a single ab-
sorbing state 0 that is reached with probability 1,
the expected absorption timeτi, starting in statei,
is the minimal non-negative solution to the system
of equations∑

j≥0

qijzj + 1 = 0, i ≥ 1, (4)

with z0 = 0. This result can be found in any text on
Markov chains (see, for example, Theorem 3.3.3 of
Norris (1997)), and yet it is apparently not widely
known to biologists, a problem that is no doubt due
to the highly technical nature of many papers on the
subject. It is, however, often just a matter of sim-
ple arithmetic to evaluate the expected absorption
times, and failing that, a host of numerical meth-
ods exist—we are merely solving a system of lin-
ear equations. In their paper “Four facts every con-
servation biologist should know about persistence”,
Mangel and Tier (1994) implore their readers to use
(4): Fact 2 “There is a simple and direct method for
the computation of persistence times that virtually
all biologists can use”.

We will now address the problem of deriving ex-
pected extinction times for the present case, culmi-
nating in the theorem stated towards the end of this
section. On substituting the transition rates, (4) be-
comes

fiazi+1 − fizi + fi

i−1∑
j=1

di−jzj + 1 = 0, i ≥ 1,

with the empty sum being interpretted as 0 when
i = 1. This can be written

azi+1 − zi +
i−1∑
j=1

di−jzj + gi = 0, i ≥ 1, (5)

where (recall that)gi = 1/fi. On multiplying by
si and then summing overi, we find that the gener-
ating functionh(s) =

∑∞
i=1 zis

i−1 of any solution
(zi, i ≥ 1) to (5) must satisfyb(s)h(s) − az1 +



g(s) = 0, whereg(s) =
∑∞
i=1 gis

i. (We delay
addressing the question of whether the solution is
non-negative.)

We know, from Lemma V.12.1 of Harris (1963),
that e(s) = 1/b(s) has a power series expansion
with positive coefficients in a neighbourhood of0.
We can identify its radius of convergence. Since
b ′′(s) = d ′′(s) > 0 for s ∈ (0, 1), b is convex on
(0, 1), and, becauseb(0) = a (> 0) andb(1) = 0,
the smallest solutionσ of b(s) = 0 in (0, 1] satisfies
σ = 1 if D ≥ 0 andσ < 1 if D < 0. Furthermore,
b(s) > 0 for all s ∈ [0, σ). Therefore, the power se-
ries expansion ofe(s) has radius of convergenceσ.
(In the present subcritical case,σ < 1.) Let us write
e(s) =

∑∞
j=0 ejs

j , |s| < σ, whereej > 0, noting
thata = b(0) = 1/e0. Lettingκ = az1, we obtain

h(s) = z1 +
∞∑
i=1

κei − i∑
j=1

gjei−j

 si,

and hence, fori ≥ 2,

zi = κei−1 −
i−1∑
j=1

gjei−1−j . (6)

Now, (ei) is an increasing sequence. To see this,
observe that if we hadgi = 0 for all i, then we
would havezi = κei−1 and then, from (5),

aei − ei−1 +
i−1∑
j=1

di−jej−1 = 0, i ≥ 1, (7)

with the empty sum being interpretted as 0 when
i = 1. Hence,(ei) satisfies

a(ei − ei−1) =
i−1∑
j=1

di−j(ei−1 − ej−1)

+ ei−1

∞∑
j=i

dj , i ≥ 1. (8)

Sincee0 = 1/a > 0 anddj > 0 for at least one
j ≥ 1, a straightforward inductive argument shows
that(ei) is increasing.

Therefore, referring to (6),(zi) is the difference of
two non-negative increasing sequences. Thus, in or-
der to ensure that(zi) itself is non-negative, we re-
quireκ ≥ supi≥1 hi, where

hi =
1
ei

i∑
j=1

gjei−j =
i∑

j=1

gj

(
ei−j
ei

)
. (9)

The minimal solution is then obtained on setting
κ = supi≥1 hi.

Since(ei) is increasing, we have0 < ei−j/ei ≤ 1
for all i ≥ j ≥ 0. Moreover, becauseσ is the ra-
dius of convergence of

∑∞
j=0 ejs

j , we haveσ =
limi→∞ ei−1/ei, whenever this limit exists, imply-
ing thatei−j/ei → σj for eachj. Hence, formally,
hi → g(σ). Once we prove that this limit exists and
equalssupi≥1 hi, we may setκ = g(σ) to obtain
the minimal non-negative solution to (5).

To achieve this, we will draw further on branching
process theory. Sincee(s) has a power series ex-
pansion with positive coefficients, then so does

π(s) = aπ1

∫ s

0

du

b(u)
, |s| < σ.

Indeed, writingπ(s) =
∑
i≥1 πis

i, it is easy to see
thatπi/π1 = aei−1/i, i ≥ 1. However, the coeffi-
cients(πi) form a stationary measure on{1, 2, . . . }
for the Markov Branching Process with offspring
distribution (qi, i ≥ 0), whereq0 = a, q1 = 0
andqi = di−1 for i ≥ 2 (refer to the corollary of
Theorem V.12.2 of Harris (1963)). Theorem 1(e) of
Yang (1973) then givesiπiσi ↑ aπ1/(1− d ′(σ)),
asi → ∞, wheneverD 6= 0 (note thatd ′(σ) < 1
since b ′(σ) < 0 whenD 6= 0). Consequently,
eiσ

i+1 ↑ 1/(1− d ′(σ)). Thus, by the monotonicity
of this limit, ei−1/ei ≤ σ and henceei−j/ei ≤ σj

for j = 1, . . . , i. Furthermore,ei−j/ei → σj as
i → ∞. Applying the Dominated Convergence
Theorem to (9) shows that ifg(σ) < ∞, then
hi → g(σ) and hencesupi≥1 hi = g(σ) because
hi ≤ g(σ). On the other hand, Fatou’s Lemma al-
ways giveslim infi→∞ hi ≥ g(σ), so if g(σ) =∞,
thensupi≥1 hi =∞. We have therefore proved the
following result.

Theorem For the subcritical birth, death and catas-
trophe process with transition rates (1), let(ei, i ≥
0) be the coefficients of the power series expansion
of e(s) = 1/(d(s) − s), |s| < σ, whered(s) is
given by (2), andσ (< 1) is the smallest solution
of d(s) = s in (0, 1]. Then, the expected extinc-
tion timeτi, starting in statei, is finite if and only if
κ :=

∑
i≥1 σ

i/fi <∞, in which caseτ0 = 0 and

τi = κei−1 −
i−1∑
j=1

ei−1−j/fj , i ≥ 1. (10)

Thus, equations (7) and (10) provide a direct
method for evaluating persistence times for a wide
range of population processes. Moreover, each of
the conditions of the theorem will frequently be sat-
isfied in practice: the importance of catastrophes in
this context is that they often contribute, over long
periods of time, to a downward drift in the popula-
tion (soD < 0 and the process is subcritical), and
the quantityκ will be finite in many situations, too,



including most of the examples treated in the next
section.

We conclude this section with some remarks on the
critical and supercritical cases, both of which have
σ = 1. Our theorem is certainly valid in the critical
case provided that the variance of the catastrophe
size distribution is finite (d ′′(1−) < ∞): the ex-
pected extinction times are all finite if and only if
κ :=

∑
i≥1 1/fi < ∞, in which case (10) holds.

This is true because, asi→∞, ei−j/ei → 1 (from
Theorem 1(c) of Yang (1973)). (The infinite vari-
ance case is mathematically delicate, and we will
not pursue it further here.) In the supercritical case,
where there is a probabilityαi of extinction, start-
ing in i, which is strictly less than1 (and there-
fore the expected extinction times are infinite), it is
possible to evaluate expected extinction timescon-
ditional on extinction occurring. This can be done
by interpreting our result for the (subcritical) birth,
death and catastrophe process with transitions rates
q̄ij = qijαj/αi, and following the progamme laid
out in Walker (2001).

6. EXAMPLES

First let us examine the linear case studied by
Brockwell (1985). This hasfi = ρi, whereρ >
0. So, g(s) = − log(1 − s)/ρ, |s| < 1, imply-
ing that g(σ) is finite wheneverσ < 1. Setting
κ = − log(1− σ)/ρ, we get from (10)

τi =
1
ρ

ei−1 log
(

1
1− σ

)
−

i−2∑
j=0

ej
i− j − 1

 ,

for i ≥ 1. This is equivalent to

∞∑
i=1

τis
i−1 =

1
ρb(s)

log
(

1− s
1− σ

)
, |s| < σ,

which is equation (3.1) of Brockwell (1985).

Further examples of the subcritical birth, death and
catastrophe process for which the expected extinc-
tion times are finite include the following cases.
In the case where events occur at a constant rate
fi = ρ > 0, and hence where the rate at which
catastrophes occur is independent of the popula-
tion size (for example, some environmental catas-
trophes), we find thatκρ = σ/(1 − σ). A second
example is wherefi = ρi(i+1), so that events occur
at a rate proportional to the number of interactions
between individuals, giving

κρ = 1−
(

1− σ
σ

)
log
(

1
1− σ

)
.

If fi = ρβi−1, whereρ, β > 0, then the expected
extinction times are finite only ifσ < β, in which

caseκρ = βσ/(β − σ). This latter example gen-
eralises the constant rate case, whereβ = 1, while
remaining analytically tractable.

Explicit results can be obtained in cases where the
catastrophe size follows a geometric law. Geomet-
ric distributions occur in circumstances where we
are waiting for the first ‘success’ in a sequence of
independent trials. In the context of population pro-
cesses with catastrophes, a geometric catastrophe
size distribution would correspond to the case where
the decline in the population is halted as soon as
any individual survives the catastrophic event. This
may be appropriate for some forms of catastrophic
epidemics. Suppose then that catastrophes follow a
geometric law:di = b(1 − q)qi−1, i ≥ 1, where
b(> 0) satisfiesa + b = 1, and0 ≤ q < 1. Here,
q is the probability that the ‘next’ individual will
succumb to the catastrophe. The simple birth-death
process with linear birth and linear death rates is
recovered on settingq = 0. It is easy to see that
D = a− b/(1−q), and soD < 0 orD ≥ 0 accord-
ing asc > 1 or c ≤ 1, wherec = q + b/a. We also
have

b(s) =
(b+ qa)s2 − (1 + qa)s+ a

1− qs

=
a(1− s)(1− cs)

1− qs
,

and hence ifD < 0, thenσ = 1/c (< 1). The coef-
ficients of the power series1/b(s) =

∑∞
j=0 ejs

j are
easily evaluated using partial fractions. IfD < 0 (or
indeed ifD > 0), then

ej =
1− q − (c− q)cj

a(1− c)
, j ≥ 0.

We may evaluateτi by substituting these expres-
sions into (10). If, for example,fi = ρβi−1, where
ρ, β > 0, then ifβ = 1,

τi =
1 + (1− q)(i− 1)
ρ(b− a(1− q))

, i ≥ 1,

while if β 6= 1, the expected extinction times are
finite only if β > a/(b+ qa), in which case

τi =
1− q − (γ − q)γi−1

ρ(b− a(γ − q))(1− γ)
, i ≥ 1,

whereγ = 1/β.

The relationship between the expected extinction
timesτi and the rate coefficientsfj , j < i, is de-
scribed by equation (10). The examples given in
Figure 1 demonstrate a range of qualitatively dif-
ferent relationships between the initial state of the
populationi and expected extinction times. In each
of these cases, the catastrophe size follows the same
geometric distribution. First, letfj = ρβj−1, and



Figure 1: Expected extinction timesτi for several
processes with rate coefficientsfj = ρβj−1. An in-
crease infj will produce a corresponding decrease
in timesτi, for i > j.

let ρ = 2 be fixed. Forβ < 1, β = 1 andβ > 1,
and hence forfj decreasing, constant and increas-
ing with j (respectively), the rate of change inτi is
increasing, constant and decreasing withi (respec-
tively). Then, fixingβ = 1, by alteringρ by a fixed
factor, 2, we alter the rate of change inτi by the
same factor, but in the opposite direction.
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