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Abstract: Symbiosis or mutualism is one of major ecological interactions between two species, where the 
both species gain benefits via the interactions. We consider the population dynamics of mutualistic 
interactions with positive density and frequency dependences. We specifically suppose the dynamics of 
Müllerian mimicry in butterflies for positive density dependence, where the mortality of both species is 
reduced depending on the relative frequency of the other species. Positive frequency dependence is studied in 
contrast with positive density dependence, and supposing the general relationships of symbiosis. We assume 
that the two species are under the Lotka-Volterra density-dependent competition. The equilibria are 
compared with the cases of competition alone. Unlike the traditional model of positive density dependence, 
population explosion does not appear in the current dynamics, but the new equilibrium is simply achieved. It 
is because the effects of positive density or frequency dependence are restricted to parts of mortality. 
Symbiotic relationships never invoke infinite population growth, because of limited effects on population 
growth. However, the two models show a distinctive difference for the coexistence. Positive density 
dependence does not promote coexistence of species. Only when the coexistence is achieved under 
competition, the equilibrium densities are increased. In contrast, positive frequency dependence always 
promotes coexistence. This change is also qualitative. Whether Müllerian mimicry is a special case of 
mutualism, or mutualism does not promote coexistence under competition is an open question. 
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1. INTRODUCTION 

Mutualism or symbiosis is often considered as one 
of the major categories of ecological interactions of 
populations or species. Recently, mutualism is also 
suggested as an important factor of community 
stability in general (Golick, Atkins and Losey, 1978, 
May 1982). However, the population dynamics of 
mutualistic relations are rarely described, except the 
case of positive density dependence (May 1982, 
Bertness and Hacker, 1994, 1997, Stiling, 1999). 
The population equation with positive density 
dependence is in contrast with the negative density 
dependence of the Lotka-Volterra type competition 
(May, 1976, Ginzberg, 1983, Boucher, 1985, 
Tainaka et al., 2003). However, the positive density 
dependence is problematic, since the strong 
mutualism leads to the infinite population growth or 
population explosion (May, 1982, Tainaka et al., 
2003).  

Here we consider the population dynamics of 
mutualistic interactions. One such example is the 
dynamics of Müllerian mimicry in butterflies, in 
which the benefits of mimicry are mutual between 
the two toxic butterfly species. Müllerian mimicry 
is one of famous example of symbiotic 

relationships (Wicker, 1968). Its evolutionary 
mechanisms have been studied extensively 
(Futuyma and Slatkin, 1983). However, the 
population processes of such mutualistic 
relationships are not well known.  

Recently frequency dependence is discussed as a 
new type of population interactions in the dynamics 
of competition (Kuno, 1992, Yoshimura and Clark, 
1994) and predation (Hori, 1993, Takahashi and 
Hori, 1994). The known dynamics of frequency 
dependence are strikingly different from the 
traditional population dynamics, in which density 
dependence is the regulatory factor. Positive 
frequency dependence is applicable to Batesian 
mimicry, because the frequency of model is a 
critical factor of the predatory escape of the mimic. 
In contrast, Müllerian mimicry is the case, where 
the positive density dependence is expected.  

This paper describes the basic population dynamics 
of positive density and frequency dependences. We 
assume that the mortality of both species is reduced 
depending on the density or relative frequency of 
the other species. We also assume that the two 
species are under density-dependent competition. 
These processes may describe some features of 



Müllerian mimicry and other mutualistic 
relationships.   

We analyze the equilibria using phase planes. The 
equilibria are then compared with the cases of the 
Lotka-Volterra type competition alone. Positive 
density dependence does not promote the 
coexistence, but stabilize the coexistence by 
enlarging the equilibrium densities. In contrast, 
frequency dependence always promotes coexistence. 
In either case, the dynamics leads to a new 
equilibrium without any population explosion. We 
discuss the population dynamics of various forms 
of mutualistic interactions. We also discuss the 
importance of such mutualistic interactions for the 
coexistence and stability of species in natural 
communities and ecosystems. 

 

2. MODEL OF POSITIVE DENSITY AND 
FREQUENCY DEPENDENCES 

2.1. Reduction in mortality 

In Müllerian mimicry both a mimic and its model 
are poisonous or unpalatable. Müllerian mimicry in 
poisonous butterflies is known to reduce mortality 
of both the mimic and model (Wickler, 1968). 
Experienced birds learn the wing patterns of 
poisonous or unpalatable butterflies and avoid 
catching them. However naïve (inexperienced) 
birds with almost no learning experience tends to 
prey on these poisonous butterflies. Therefore, 
butterflies are eaten by naïve birds until the birds 
learn their wing patterns.  

If there are two poisonous butterflies similar in 
wing patterns, their predation rates are reduced by 
enhancing the learning experience of naïve birds. If 
birds cannot recognize the difference in their wing 
patterns, birds predate and learn them as a single 
species. Therefore, the mortality of each butterfly is 
reduced depending on the total density of both 
species. Suppose two sympatric species Si (i =1,2). 
The reduction rate in predatory mortality, di, should 
depend on the total density: 

 

di  =  di (N1 + N2)  =  1/(N1 + N2),  i =1,2.   (1) 

 

where Ni is the population size of species i. Here we 
assume N1 + N2 > 1, so that di < 1.  Note that di = 1 
indicates no reduction in mortality, whereas  di = 0 
is the 100% reduction in mortality.   

In contrast, symbiosis may be more like frequency 
dependence. The existence of symbionts may 
enhance the population growth of a species by 
increasing the survival of the individuals. We 

would expect the mutualistic benefits in such 
symbosis, e.g., that between lycaenid butterfly and 
ants, that between hermit crabs and sea anemones, 
and lichen (symbiosis between fungi and algae). In 
symbiosis, the existence of the other species 
reduces the cost/mortality of the symbionts. Then 
the relative frequency fi of a species is an 
appropriate measure of mortality reduction, such 
that: 

 

fi  =  fi (N1, N2)  =   Ni /(N1 + N2),  i =1,2.        (2) 

 

Here fi indicates that the existence and population 
size of the mutualistic partner enhances the 
reduction of mortality. With no partner, fi = 1 (no 
reduction) and with infinite partners, fi = 0 (the 
100 % reduction in mortality).   

We should note that the density-dependent 
reduction in mortality might be applicable to 
Müllerian mimicry. However, the frequency-
dependent reduction cannot be applicable, because 
both mimics and models gain benefits of other 
individuals irrespective of species. Thus, the 
frequency-dependent equation (Eq. 2) should not be 
applicable to the mutualism appeared in Müllerian 
mimicry.  

The partial mortality of each species may be 
reduced depending on the total density or the 
relative frequency of the other species. It is natural 
that such reduction is limited to a certain kind of 
mortality, e.g., bird predation in Müllerian mimicry. 
These functions may be complex, but for simplicity 
we assume that the reduction rate of a species hi = 
di  or fi (Equations 1 and 2). 

2.2. Population dynamics equation 

To evaluate mortality separately from birth rates, 
the population growth rate ri is separated into birth 
and mortality rate. Let bi = bi(Ni, Nj, αij) and  

),,(ˆˆ ijjiii NNmm α= denote the birth rate and 
mortality rate, respectively (Fig. 1). Note that the 
term  includes the reduction of mortality 
incurred by mutualistic interactions. The population 
dynamic equations are then expressed as 
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The terms bi and  are defined as im̂
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Some phase plains for positive density dependence 
are shown in Fig. 3. The relationships between 
species are identical to those of the Lotka-Volterra 
competition model, while the four intercepts are 
proportionally enlarged. Thus the equilibria is 
qualitatively identical to those of the competition 
model. For the case of coexistence, the equilibrium 
densities of both species are increased 
proportionally (Fig. 3 A). Therefore, coexistence is 
said to be quantitatively promoted. However, in the 
other three cases, the relationship is also enlarged. 
Therefore, exclusion is said to be actually 
strengthened (one case is shown in Fig. 3 B). 
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where pi1 and pi2 are the density-independent and 
density-dependent fractions of reduced mortality, 
respectively. The other parameters are as follows. 
The terms bi0 and mi0 denote the intrinsic birth and 
death rates, respectively and bik = mik denote the 
birth and death rates at the carrying capacity Ni = Ki. 
αij, is the Lotka-Volterra competition coefficient of 
species j on i. Note that b (Fig. 
1). If h

00 iikiki mmb ≥=≥

ii m̂=

i = 1 and/or pi1 = pi2 = 0, Equation 2 
collapses to the Lotka-Volterra competition 
equation with ri = bi - mi, where m when pi1 
= pi2 = 0. 

 

 

 
Figure 1. The schematic relationships among the 
birth rate bi and mortality rate m . Both biˆ i and m  
are the functions of the current population size N

iˆ

iˆ
i(t) 

(Equations 4 and 5). The actual mortality m  
(dotted line) is lower than the mortality without 
mutualism mi. Density dependent balance between 
mortality and birth rates at Ni = Ki moves to the 
intersection between the solid mortality line  and 
the solid birth line b

im̂
i (Ni = Knew).   

 

3. RESULTS 

Setting dNi / dt = 0, we obtain the zero-growth 
isoclines for Si, viz. bi -   = 0 (Fig. 2). The 
isocline of positive density dependence is the 
straight line parallel to that of the Lotka-Volterra 
competition model (Fig. 2 A), because it is simply 
enlarged by the total density N

im̂

1 + N2. Therefore, zd 
=  Kd /α12. In contrast, the isocline of frequency 
dependence is a concave curve originated from N1 = 
K1 (Fig. 2 B).  

Figure 2. Isoclines for the population dynamics of 
positive density and frequency dependences. The 
isoclines of Lotka-Volterra competition model are 
also shown for comparison. (A) positive density 
dependence: the N1- and N2-intercepts are Kd  and zd, 
respectively. (B) positive frequency dependence: 
the N1- and N2-intercepts are K1  and zf, respectively.  
Both zd and zf are larger than K1/α 12, the N2-
intercept of the competition model.  



 

 
 

Figure 3. Phase planes for positive density-dependence with the Lotka-Volterra competition (Equations 1,3-
5). The zero-growth isoclines are a straight line parallel to that of competition only, anchored at (Kd1, 0) and 
(0, zd1) for i = 1, or at (0, Kd2) and (zd2, 0) for i = 2. (A) Coexistence is possible under competition only (S: 
stable equilibrium). (B) Coexistence is impossible under competition only.  The isoclines are not only 
parallel to, but also proportional to the original competition-only isoclines, that is zdi =  Kdi /αij (i,j=1, 2). 

 

 

 
 

 

Figure 4. Phase planes for positive frequency-dependence with the Lotka-Volterra competition (Equations 2-
5). The zero-growth isoclines are a concave curve anchored at (K1, 0) and (0, zf1) for i = 1, or at (0, K2) and 
(zf2, 0) for i = 2. The letters S and U indicates stable and unstable coexistent equilibria, respectively. (A) 
Coexistence is achieved (zf2 > K1) when species S1 only survives under competition only. (B) Coexistence is 
achieved (zf2 > K1 and zf1 > K2) when either S1 or S2 survives under competition only. 



The equilibrium cases for positive frequency 
dependence are shown in Fig. 4. Here coexistence 
is always promoted by the existence of the other 
species.  Equilibrium states are qualitatively 
changed from exclusion to coexistence. 
Coexistence becomes possible if the effects are 
larger than a certain threshold (Fig. 4 A and B). If 
coexistence is maintained under competition, 
positive frequency dependence simply enlarges the 
equilibrium density, as in the case of coexistence 
with positive density dependence (Fig. 3 A). 
However, the stability is also increased by 
increasing the curvatures of the isoclines, unlike 
that of positive density dependence.  

 

4. DISCUSSIONS 

The current results show that mutualistic 
interactions do not invoke population explosion. 
The new equilibria are simply achieved in all cases. 
Mutualistic interactions usually affect some limited 
aspects of life history. In the current model, only 
partial mortality is reduced by mutualistic 
interactions. It is possible that reproduction or birth 
rate may be increased to a certain limit. However, 
the effects of such interactions are always limited or 
restricted in some form or another. Lattice model is 
another type of such limitations (Tainaka et. al., 
2003). Symbiotic relationships never invoke infinite 
population growth, because of limited effects on 
population growth. 

Our results also show that positive density 
dependence does not promote coexistence unless 
coexistence is already achieved (Fig. 3). For 
example, Müllerian mimicry does not promote 
coexistence of butterflies. It only increases the 
equilibrium density of butterflies if coexistence is 
originally attained before the evolution of mimicry. 
This is rather paradoxical, since symbiotic relations 
are thought to be evolved, because of the benefit 
inccured by the existence of symbionts. Symbiosis 
is thought to promote coexistence of the symbionts, 
because of mutual benefits. 

There are at least several plausible hypotheses or 
interpretations explaining this result: 

(1) Müllerian mimicry does not promote the 
coexistence of butterflies, but only increases the 
equilibrium densities. It is a special case of 
symbiosis that does not involve positive frequency 
dependence.  

(2) The current state of coexistence in butterflies is 
the evolutionary outcome of Müllerian mimicry. 
The evolution process is different from positive 
density dependence. 

 (3) Müllerian mimicry is an evolutionary outcome 
of  Batesian mimicry in poisonous butterflies.  The 
low-density (rare) butterflies evolve their mimicry 
to the high-density (common) model via Batesian 
mimicry. The population dynamics of Batesian 
mimicry is positive frequency dependence.  

(4)Müllerian mimicry involves some unknown kind 
of positive frequency dependence.  

Thus the population dynamics of positive density 
dependence that is developed for Müllerian 
mimicry does not promote the coexistence of 
butterflies. 

In contrast with positive frequency dependence, 
positive frequency dependence promotes 
coexistence by changing the equilibrium states 
qualitatively (Fig. 4). Recently negative frequency 
dependence is proposed in competition (Kuno, 
1992, Yoshimura and Clark 1994) and predation 
(Stiling, 1999, e.g., Hori, 1993, Takahashi and Hori 
1994). In principle, positive frequency dependence 
seems valid to symbiotic relationships. However, 
the functional relationships of Müllerian mimicry 
indicate that positive frequency dependence is not 
applicable. It is an open question whether Müllerian 
mimicry is a special case of mutualism or not. In 
our original model, the Lotka-Volterra competition 
is assumed. For example, in lichens, algae and 
fungi could be under competition for space because 
of the limited space for growth of cells. However, 
symbiosis may be evolved only under no 
competition between symbionts.  

Positive frequency dependence can be applicable to 
Batesian mimicry (Wickler 1968), where the mimic 
only gains the benefits of predatory avoidance, 
while the model may incur the costs of mimic when 
numerous. In this case, the model butterflies may 
suffer the cost of mimic if the mimic becomes 
frequent.  Here both the mimic involves positive 
density dependence and the model may suffer 
negative frequency dependence.  

Because the community stability is enhanced by 
mutualistic interactions (Golick, Atkins and Losey, 
1978, May, 1982), many of the present natural 
communities may be evolved and sustained by such 
mutualistic interactions. There are many different 
types of mutualistic interactions within a 
complicated food web. Some may depend on the 
density of the other species; some on the frequency; 
and others may be the combination of both. We 
have to evaluate the functional response of 
individuals in natural community to determine the 
population-level effects of such interactions. As 
Tainaka et al. (2003) suggested, mutualistic 
interactions may only be effective when the 
environmental conditions are good (in a certain 
range), but competition arises under severe 
environmental conditions. Both mimicry and 



mutualistic interactions are unsolved topics in the 
population study of ecological interactions. 
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