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Abstract: RaMCo (Rapid Assessment Model for Coastal Zone Management) is a decision support system, 
which encompasses a number of sub-models, namely, marine fisheries, catchment hydrology, land-use/land-
cover changes, marine hydrodynamics, and coastal ecology. The model has been developed by a 
multidisciplinary team including researchers from various institutions in the Netherlands and Indonesia. The 
coastal zone area of South-West Sulawesi (Indonesia) serves as the study area. Limited calibration of the 
model has been conducted due to the scarcity of data, and extensive expert knowledge was used to fill that 
lack. Though validation is essential prior to any practical implementation of the model it has not been done 
yet. Presently, with newly collected data on socio-economic, land use and land cover changes, we are on the 
way to validate that model. Our ultimate goal is to obtain a generic methodology for validation of complex 
integrated systems models like RaMCo. In this paper, we present the analysis on the problem of integrated 
systems model validation, i.e. concept, difficulties, research questions, general framework of validation. 
Besides, the results of sensitivity and uncertainty analyses using a screening design are shown. The analyses 
and the framework of validation of the present model indicate an important role of the sensitivity and 
uncertainty analyses throughout the whole process of validation of an integrated systems model. 
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1.  INTRODUCTION 

The Netherlands Organization for Advancement 
of Tropical Research (WOTRO) launched a 
multidisciplinary research program in 1984. The 
aim of the project was to develop a scientific 
framework of analysis for coastal zone 
management. In the view of the project’s theme, 
scientists from various fields (i.e. ecology, 
hydrology, oceanography, anthropology, 
economics, system dynamics etc.) gathered 
together, in search for a scientific methodology to 
support coastal zone management. The ultimate 
product of their efforts is RaMCo (Uljee et al., 
1996; De Kok and Wind, 2002). Previously, each 
sub-model of RaMCo had been calibrated 
separately, using the maximum available field 
data from Southwest Sulawesi (Indonesia), expert 
knowledge and data obtained from literature. 
However the validation of RaMCo as a whole 
system model has not been conducted yet. 
 
There have been an increasing number of 
examples adopting an integrated systems 
approach, especially in the fields of modeling 
climate change and natural resources 
management. Researches are often involved with 
the design and application of a number of 

integrated models. However, these models are not 
completely validated in a systematic manner. The 
reason may be attributed to the lack of a 
methodology or a framework for validating these 
types of models. The following five factors are 
thought to form an obstacle to the validation of 
integrated systems models:  
 

• Lack of a generally agreed definition of 
validation 

• Lack of conventional criteria for model 
validity 

• Complexity of integrated systems 
models 

• Difficulty in obtaining test data 
• Large model and data uncertainties 

 
Although the literature on validation is abundant 
the issue is still controversial (see Rykiel, 1996). 
In the present paper, an attempt is made define 
validation for integrated systems models. Based 
on that definition, it tries to set up a methodology 
to validate the RaMCo model. Before arriving at a 
definition of validation, it is necessary to point 
out some remarks that help to separate validation 
from other processes. 
 



• Calibration is the process of specifying 
the values of the model parameters with 
which model behavior and real system 
behavior are in good agreement. 

 
• Verification is the process of 

substantiating that the computer program 
and its implementation are correct, i.e., 
debugging the computer program. 

 
•  Validation can be implemented after the 

model-building phase, but it is not the 
end of the model life cycle (i.e. a model 
is always in need of improvement, and 
validation facilitates the iterative 
improvement process).  So the term 
“examine” can be used interchangeably 
with the term “validate”. 

 
• The domain of model applicability is 

relevant to the validity of a model.  
 
From these points set above, we define validation 
of an integrated systems model as: “the process of 
examining the ability of a model to represent a 
real integrated system within the model’s domain 
of applicability”  

Therefore, the process of model validation 
involves answering the following questions: 
 
i) Is the structure of the model, underlying 
assumptions, and parameters contradictory with 
their counterparts observed in reality and/or with 
those obtained from expert knowledge? 
  
ii) To what extent is the behavior of the model 
system in agreement with the observed and/or 
hypothesized behavior of the real system? 
 
iii) To what degree does the model fulfill its 
designated tasks or serve its intended purpose? 
 
Consequently, the main purpose of validation is to 
show transparently both strong and weak points 
of the model to the potential users. The potential 
users could be the decision makers, analysts, or 
the model builders themselves (Uljee, 1996). To 
the model builders, validation can reveal flaws in 
the model, from which they may see a need to 
improve or rebuild the model. To the analysts, 
validation can provide the necessary information 
to facilitate the process of calibration for other 
applications, and analysis of the results before 
transferring them to the decision makers. Finally, 
to the decision makers, validation informs them of 
the degree of confidence in using the model 
results to support their decision-making 
processes. 

2. GENERAL FRAMEWORK OF ANALYSIS 

It is necessary to distinguish three systems 
(figure1) that will be frequently mentioned later. 
The real system includes existing components, 
interactions, causal linkages between those 
components and the resulting behavior of the 
coastal system in reality. We do not have enough 
knowledge of the real system in most cases. The 
model system is the system built by the modelers 
to simulate the real system, which can help 
managers in decision-making processes. The 
hypothesized system is the counterpart of the real 
system, which is constructed from hypotheses. 
The hypothesized system is created from the 
available knowledge of experts on the real system 
through the process of observation and reasoning. 
With the above classification, we can carry out 
two categories of tests, namely, empirical tests 
and rational tests with and without real field data 
(figure 1).  

We define the empirical tests as those tests that 
are conducted directly from the comparison 
between model outcomes and real field data. 
Empirical tests are conducted to examine the 
ability of the model to match historical data 
(hindcasting), future data (forecasting), and other 
qualitative behaviors (e.g. frequency, mode) of 
the real system. Where no data are available, the 
hypothesized system is used to conduct a series of 
rational tests, such as: extreme condition tests, 
boundary adequacy tests, and extreme policy tests 
(Forrester et al., 1980). These tests are called 
rational tests since they can be conducted with the 
available expert knowledge and through 
reasoning. Real data needed for empirical testing 
is usually, if not always, lacking and its accuracy 
uncertain. Hence rational tests are an important 
part of the model validation process. 

In figure 1, there are three systems as mentioned 
previously. The same stimuli as inputs of each 
system produce different values of objective 
variables as outputs. The differences are caused 
by the lack of knowledge of the real system 
and/or others (e.g. errors of field data 
measurements, computational errors). Model 
builders always want the model behavior to be as 
close to the behavior of the hypothesized and real 
systems as possible. Where no data are available, 
we have to assume that the hypothesized system 
made up by experts is a better presentation of the 
real system than the model system created by 
modelers. To get a higher degree of confidence, 
one would conduct the validation of expert 
knowledge as in the case of data validation 
(Sargent, 1991) by using expert group meetings 
and the Delphi technique (Shannon, 1975).  
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 Figure 1.  Framework of analysis for validation of RaMCo 
 

3.  FRAMEWORK DETAILS 
Step 7: Formulating hypotheses based on the 
results from step 4 and the evaluation of field data 
from step 6. (Hypotheses are validation data). 

As mentioned in the first section, one of the 
reasons that make validation of an integrated 
model difficult is the complexity of an integrated 
model. In order to overcome it, a general 
framework should be realized in systematic steps. 
The following are 16 steps ordered in four phases 
describing the whole process of model validation. 

Step 8: Evaluating the validity of the hypotheses 
created from step 7 considering the purpose of the 
model. 

3.3.  Phase 3.  Testing 

Step 9: Determining the appropriate tests 
(examples: t-tests and extreme condition tests) for 
each sub-model or cluster specified in step 4 
based on phase 2 considering the model purpose.  

3.1.  Phase 1.  Specifying relevant components 

Step 1:  Selecting the most important 
Management Objective Variables (MOVs) of the 
Decision Support System (DSS) from preferences 
of the local decision makers.  Step 10: Determining the norm (validity criterion) 

for each test in step 9 considering the purpose of 
the model and the nature of the test. Step 2: Searching for the most influential 

combinations of measures, scenarios, and inputs 
(i.e. stimuli) on the above MOVs by doing 
sensitivity and uncertainty analyses. 

Step 11: Carrying out the tests 

Step 12: Representing the tests results in 
graphical forms and tables. Step 3: Selecting the State Variables (SVs, i.e. 

outputs of sub-models) that link stimuli to MOVs. 
3.4.  Phase 4.  Assessment and documentation 

Step 4: Identifying the sub-models and/or clusters 
describing the links from stimuli to MOVs. Step 13: Quality assessing model validity  

Step 14: Discussing the usefulness of the model 
3.2. Phase 2. Collecting and evaluating 
validation data Step 15: Recommending for model improvement 

considering the purpose of the model. 
Step 5: Collecting field data relevant to the most 
influential stimuli (measures, inputs, scenarios), 
SVs, MOVs found from steps 1to 4. 

Step 16: Documenting and reporting. 

In the above steps,  “purpose of the model” has 
been repeated many times to emphasize that the 
purpose of the model decides the framework of 
validation as well as the details of most steps.  
RaMCo was designated as a link between 
measures, scenarios, and MOVs to support rapid 
decision-making processes.  This means that 

Step 6: Evaluating the accuracy, sufficiency, and 
appropriateness of the data collected from step 5 
considering the purpose of the model. 

 



point-by-point matching is generally not the target 
of RaMCo since it is not a predictive model in 
strict sense. The consistency between the trend of 
model behavior and the behavior of the real 
system is more important.  

4. IDENTIFICATION OF INFLUENTIAL 
FACTORS USING MORRIS METHOD 

One of the most important steps in phase 1 is to 
identify the most influential measures, scenarios, 
parameters and inputs (all together are called 
factors in the analysis) on selected MOVs. When 
dealing with a complex model like RaMCo 
(totally includes 309 factors), selection of which 
sensitivity and uncertainty analyses to use is very 
crucial. Following the guideline set up by 
(Morgan et al. 1990), the present study adopts the 
Morris method (Morris, 1991) to find out the 
factors that have important effects on the MOVs.   

Depending on which definitions of sensitivity 
analysis and uncertainty analysis used, the Morris 
method can be categorized as either sensitivity or 
uncertainty analysis. According to Morgan et al. 
(1990) “Uncertainty analysis is the method for 
comparing the importance of the input 
uncertainties in terms of their relative 
contributions to uncertainties in the outputs. 
Meanwhile sensitivity analysis is the method for 
computing the effect of changes in inputs on the 
model prediction”. In regard to this definition, the 
Morris method belongs to the uncertainty analysis 
category. Therefore, the term “sensitivity and 
uncertainty analyses” is taken here to denote 
uncertainty analysis as defined by Morgan et al. 
(1990) and sensitivity analysis as used by Morris 
(1991). 

 4.1.  Morris method  

Morris (1991) made two significant contributions 
to sensitivity analysis. First, he proposed the 
concept of elementary effect, di(x), attributable to 
each input xi. An elementary effect can be 
understood as the change in an output y induced 
by a relative change in an input xi (e.g. the 
increment of 300 kg BOD/day of the total BOD 
load to the coastal sea is induced by decreasing 33 
% water treatment plant’s capacity).  
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In the above equation, X is a vector containing k 
inputs or factors (x1, ..xi,…xk). A factor xi can 
r ndomly take a value in an equal interval set a
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1 and xi
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and maximum values of the uncertainty range of 
factor xi, respectively. Symbol p denotes number 

of levels chosen for each factor. For the sake of 
technical convenience, each element of vector X 
is assigned a rational number (Morris, 1991) or a 
natural integer number (Campolongo et. al, 1997) 
in the Morris design. Therefore, transformations, 
after the design, of these factors to real numbers 
are necessary for model computations. Symbol ∆ 
denotes a predetermined increment of an input xi, 
whose value is chosen in such as way that xi + ∆ 
is still within the uncertainty range of xi. The 
frequency distribution Fi constructed by randomly 
selecting r elementary effects of each input xi tells 
us about the degree and nature of the influence of 
that input on the specified output. For instance, a 
combination of a relatively small mean µi with a 
small standard deviation σi indicates a 
“negligible” effect of the input xi on the output. A 
large mean µi and a large standard deviation σi  
indicates a strong nonlinear effect or strong 
interaction with other inputs. A large mean µi and 
small standard deviation σi indicates a strong 
linear and additive effect. Second, he designed a 
highly economical numerical experiment to 
extract k samples of elementary effects; each has 
size r (k is the number of analyzed factors and r is 
the number of elementary effects constructing one 
Fi). The total number of model runs is in the order 
of k (rather than k2). To save space of this article, 
the full description of the design is skipped. Refer 
to Morris (1991) and Campolongo et al. (1997) 
for details.  The following are steps that were 
applied to this particular model to arrive at the 
results described in the next section. 

First, three outputs of the model - live coral reef 
area, total BOD load to the coastal sea, and 
sediment transported to the reservoir - after 5 
years, 10 years, and 25 years of simulation were 
selected to be the quantities of interest. Second, 
model factors were grouped and the 
representative factors for each group were 
selected manually. As the result from this step, 
the number of factors to be analyzed reduced 
from 309 to 137 (k = 137). Third, the quantitative 
ranges of parameters and inputs were specified 
using historical data analyses, literature, and 
expert knowledge. Fourth, the Morris design is 
applied with the number of level for each factor 
equal four (p = 4), the increment of xi to compute 
elementary effects di(x),  ∆ = 1 (see Campolongo 
et al., 1997). The selected size of each sample r = 
9. A total of 1142 model evaluations were 
performed (N = r(k + 1)). Finally, the two 
measures indicating the importance of each 
factor’s contribution to the uncertainty in the 
outputs, µ and σ are computed and plotted. The 
inferences from those plots are discussed in the 
following section. 



4.2. Results   

 Figure 2 to figure 4 show the two measures of 
influence of 137 factors on the three selected 
outputs after 5 years of simulation. Only the 
important factors are numbered in these figures. 
Table 1 contains a description of each factor. It is 
worth noting that the purpose of the Morris 
method is to determine which inputs have 
important effects on the outputs. Care should be 
taken when interpreting order of importance for 
each input. The results serve to highlight the 
factors we should pay most attention to when 
collecting data since these have the most 
influences on the model outputs. 
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 From figure 2 it can be inferred that preventing 
blast fishing on coral reefs would play a dominant 
role in the survival of the coral reefs in the study 
area. This conclusion was compared with expert 
knowledge to confirm qualitatively the ability of 
the model system to mimic the real system.  

Figure 2. Means and standard deviations of the 
distributions of elementary effects of 137 factors 

on live coral reef area. 

 
In figure 3, the most influential factor on total 
BOD load discharged to the coastal sea is 
pollution from shrimp culture, not pollution from 
residential uses or industry. Since the value of 
parameter 124 (BOD load generated by 1 kg of 
shrimp) was roughly estimated from few 
measurements (large uncertainty), it suggests a 
need to spend more effort on investigating this 
factor during data collection and validation of the 
model.   
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Figure 4 shows the most influential factors on the 
amount of sediment transported into the reservoir. 
Since agriculture is the most sensitive land-use to 
erosion, factor 28 (cover and management factor 
C for agriculture) and factor 33 (support practice 
factor P for agriculture) have the highest means 
and standard deviations. A recent examination of 
these two parameters shows that the authors over 
estimated the initial uncertainty range of 
parameter 33. It would be adjusted to reduce the 
uncertainty in the output.  

Figure 3. Means and standard deviations of the 
distributions of elementary effects of 137 factors 

on total BOD load.  
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A dense luster of points lying away from 
horizontal axis in figure 4 can be explained by the 
existence of a stochastic rainfall-generating 
module employed in RaMCo. 

Results of Morris analyses after 10 and 25 years 
of simulation (not shown here) are similar to the 
three figures shown for 5 years of simulation. The 
most influential factors remain the same but the 
order of the importance is slightly different. 
Specifically, for the sediment transported into the 
reservoir, factor 81 (natural spatial growth rate of 
forest) appears to be an influential one only after 
25 years of simulation. It reflects the fact that the 
importance of each factor can change with time in 
a system dynamics model.  

Figure 4. Means and standard deviations of the 
distributions of elementary effects of 137 factors 

on sediment transported to the reservoir. 

 



Table 1. Descriptions of the most influential 
factors on 3 MOVs resulted from Morris analysis 

Factor’s 
label 

Description 

133 Damaged surface area of coral reef per 
fish blast 

135 Average number of fish blasts per year 

134 Recovery rate of damaged coral reef 

132 Natural colonization rate of coral reef 

68 Spatial extension growth rate of 
shrimp culture 

86 Yield of intensive shrimp culture 

124 BOD load generated by 1 kg of shrimp 

13 Relative growth rate of price of 
intensive shrimp culture 

14 Relative growth rate of cost of 
intensive shrimp culture 

113 Purification capacities of water 
treatment plant 

120 BOD concentrations before entering 
water treatment plant 

87 Yield of extensive shrimp culture 

28 Cover and management factor C for 
agriculture 

33 Support practice factor P for 
agriculture 

25 Adjustment coef. for rainfall amount 

26 Slope length 

5 Reforestation factor 

41 Sediment delivery ratio for sub-
catchment 4 

11 Growth coef. of price for agriculture 

85 Agriculture yield 

81 Natural spatial extension of forest 

 

5.  CONCLUSIONS  

A new framework and its realization for 
validation of integrated systems model has been 
presented. It originated from a desire to establish 
a general methodology to validate any models of 
the same type. Though the final results have not 
been completed, the authors want to show the 
initial findings toward a practical framework for 
validation of an integrated systems model. In 
addition, the application of the Morris method to 

the present problem confirms the three important 
roles of sensitivity and uncertainty analyses 
throughout the process of validation. First, it 
helps to pinpoint those parameters, inputs, and 
measures that need more investigations in the 
process of model validation. Second, it allows 
end-users of the model to judge qualitatively the 
validities of the hypotheses embedded in a model. 
Finally, it helps to find the backbone of a model 
with which validation should be based on. It is 
also the next step of the present research. 
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