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Abstract: Purely stochastic methods can yield useful prediction models of contaminant arrival-time 
distributions derived from advective-dispersive transport in a variety of one-dimensional environments. Two 
different models are considered, both relating to dispersion of a brief pulse of conservative contaminant in a 
steady flow system. The first model considers the arrival-time of a contaminant pulse in a river channel with 
hydraulic interaction with an adjacent unconfined aquifer (hyporheic zone). The contaminant particles 
experience chance delays in the hyporheic zone where all particle movement is deemed to be at right angles 
to the channel. This model is mathematically equivalent to a one-dimensional random walk with positive, 
zero, or negative drift. Zero drift yields scale-invariant arrival-time distributions, with all other drift values 
giving inverse Gaussian arrival times. Negative drift implies some contaminant particles never escape the 
hyporheic zone. The case of zero or near-zero drift is of particular interest because the arrival-time 
distribution is then characterized by long t-3/2 tailing over considerable time ranges. This gives a possible 
explanation of a recent river tracer experiment which recorded power-law tailing over a long period. The 
second dispersion model considers the case of temporal moments of contaminant arrival-time distributions 
when flow is partitioned into parallel stream tubes with independent advection-dispersion within each stream 
tube. This includes, for example, perfectly stratified aquifer systems or river systems where some flow moves 
along old linear channel deposits. This model yields the general result that the rth temporal central moment is 
an rth order polynomial function of contaminant travel distance. For example, the arrival time variance is a 
quadratic function of contaminant travel distance. This relation holds independently of arrival-time 
distributions and variations of hydraulic conductivity across the stream tubes.  
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1. INTRODUCTION 

Simple stochastic techniques can be useful tools 
for approximating the behaviour of contaminant 
transport in natural hydrological environments. 
This paper considers two variations on a theme of 
modeling a contaminant arrival-time distribution 
given one-dimensional transport and dispersion of 
a brief pulse of conservative contaminant under 
conditions of steady flow and spatial homogeneity 
in the transport direction.  

 

2. RIVER DISPERSION WITH SUB-
CHANNEL WATER EXCHANGE  

2.1. Introduction 

The first model presented here is motivated by a 
recently-reported investigation where a mountain 
stream tracer experiment exhibited long t-k power-
law tailing of tracer arrival time at an observation 
site downstream from the tracer input point 
(Haggery et al. 2002). The tailing effect was 
attributed to variable tracer delay in the stream 
hyporheic zone where stream water penetrates the 

unconfined aquifer beneath and lateral to the 
channel bed.  

Haggerty et al. (2002) utilised a weighted mixture 
distribution which gives rise to t-k tailing over a 
certain range of t. This model is somewhat 
empirical, however, in that k is an unknown 
parameter which must be estimated from data. 
That is, their model does not anticipate any 
specific small value of k which would give rise to 
long-tailing tracer behavior like that observed in 
their experiment. Motivated by the need for a 
more specific predictive model, the section below 
describes a stochastic transport model which has 
the prediction advantage of including t-3/2 power-
law tailing over varying time durations which 
may extend to infinity as a special case. 

2.2. Model description 

The basic geometric structure of the model is 
similar to that of Cvetkovic and Haggerty (2002), 
with particle transport between a tracer release 
point and a downstream observation point being 
modeled as a random walk on a one-dimensional 



As far as arrival times at the observation point are 
concerned, the above description is 
mathematically equivalent to a simple random 
walk on a line from a particle release point to an 
absorbing barrier at the observation point In this 
case p and q respectively indicate probabilities of 
a step to the left or right. 

lattice with equidistant nodes. The step length 
between adjacent nodes along the river channel is 
defined in the present model to be the distance ∆x, 
where ∆x is assumed to be small relative to the 
distance between the tracer release and 
observation points. 

The model has a second spatial dimension in that 
there is a possibility that any one channel node 
can divert a particle into an alternative one-
dimensional random walk at right angles to the 
channel transport direction (Figure 1). This 
represents the model of a particle visitation to the 
hyporheic zone where, for this model, the particle 
can only move perpendicular to the original 
transport direction. As with the channel nodes, the 
nodes on hyporheic zone random walks are 
spaced equally and are separated by the small 
distance increment ∆y, which may be small 
relative to ∆x. 

2.3. Model arrival-time distributions 

Because ∆x is small the equivalence of the 
diversion process to a simple one-dimensional 
random walk allows arrival-time limit results to 
apply, as given by Folks and Chhikara (1978) and 
associated discussion of that paper. Specifically, 
for 0.5p ≠  the arrival-time distribution follows 
approximately an inverse Gaussian distribution 
which can be parameterised: 
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Figure 1. Schematic of the channel random walk 
model with possible diversion to the sub-channel 
hyporheic zone. Channel particles step from left 

to right in the x direction, with chance diversion at 
right angles from the channel nodes. Two possible 

diversions of a single random walk are shown. 

where µ  is the distribution mean and δ  is a 
shape parameter. 
 

For p < 0.5 the inverse Gaussian distribution 
applies to particles which reach the observation 
point in finite time (Whitmore, 1978). For p = 0.5 
the arrival-time distribution corresponds to the 
first passage time of drift-free Brownian motion 
(Kingman, 1978). Rather than using Kingman’s 
parameterisation, this distribution is 
parameterised here by its modal value as: 
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( )1/ 2( ) 2F t tξ= Φ − 3 /     (3) A contaminant particle starts at the x-origin at 
time zero. From a given channel node, the particle 
either steps to the next channel node to the right 
(with probability p) or is diverted with probability 
q to the next node in the negative y direction and 
enters the hyporheic zone A particle in the 
hyporheic zone can only move either to the next 
node in the positive y direction (with probability 
p) or to the next node in the negative y direction 
(with probability q). The time taken for a particle 
to step between adjacent nodes is taken to be 
constant, regardless of whether the step distance 
is ∆x or ∆y. If p  0.5 then the walk will 
eventually terminate at the downstream 
observation point. For p < 0.5 there is a finite 
probability that the particle will never return to 
the original channel departure site and will thus 
remain permanently in the hyporheic zone. 

≥

where ( )f t  and  are respectively the 
density functions and distribution functions, 

( )F t
ξ  is 

the density function modal value, and Φ is the 
standard normal integral. 

The zero-drift distribution (2) is characterized by 
a long right tail (Figure 2), has infinite mean and 
variance, and a finite median of 6.58ξ . The 
distribution is scale-invariant in that the shape of 
the distribution remains unchanged as the distance 
between the origin and the absorbing barrier 
increases. Scale-invariant properties have 
implications for environmental analysis and 
impose some restrictions on environmental 
information, as noted by Haggerty et al. (2002). 



It is evident from inspection of (1) that for δ  
sufficiently small there will be a tail region of the 
inverse Gaussian distribution where the 
probability density will decline as t-3/2. That is, the 
log of ( )f t  will plot linearly against log(t) with 
gradient -3/2. This gradient extends to infinity for 
the special limit case of the zero-drift distribution. 
The extending linear gradient segment with 
decreasing inverse Gaussian shape parameter δ  
is illustrated in Figure 3, with the zero-drift 
distribution having the limit linear form. 
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Figure 2.  Plot of the zero-drift arrival-time 

distribution (2) for ξ =1. 
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Figure 3.  Double-log plot of the inverse 

Gaussian distribution (1) for a mode of 1.0, 
showing linear -3/2 tailing increasing as the shape 

parameter δ  decreases. The limit distribution 
refers to (2) with a mode of ξ  = 1.0. 

 

2.4. Discussion and application 

The model described above gives an explanation 
for contaminant arrival-time power law tailing as 
t-3/2. This represents a special case of the arrival-
time model and there is no particular physical 

reason to anticipate the drift parameter will in 
general be near zero to produce t-3/2 tailing. 
Rather, the model suggests that if long tailing is 
present then a -3/2 gradient is to be anticipated. 
Arrival-time tailing as t-3/2 is also predicted for the 
special physical situation of single-rate matrix 
diffusion – see, for example, (Hadermann and 
Heer, 1996). The present model is rather more 
general, however, in that no detailed geometric 
constraints such as spherical matrix material is 
required. Observed t-3/2 tailing therefore cannot in 
itself be taken as evidence of a single-rate matrix 
diffusion process. 

Haggerty et al. (2002) recorded tracer data over 
3.5 days and estimated a k value of 1.28 from data 
subsequent to 1.5 hr, which was defined as the 
initiation of approximate log-linearity. However, 
there is some scope for variation in the k estimate 
which changes a little with the choice of time of 
onset of log-linearity. For example, subsequent to 
8 hr the k estimate increases to 1.48 (Figure 4). It 
is difficult to say whether this estimate is more 
accurate, but there is scope for a reasonable match 
of most of the data set to the theoretical k value of 
3/2. 

 

4.4 4.6 4.8 5.0 5.2 5.4 5.6

Log10 Time

-0.6

-0.2

0.2

0.6

1.0

1.4

Lo
g1

0 
M

as
s 

Fl
ux

y = - 1.48x  + 7.85

 
Figure 4.  Least-squares regression line fitted to 

the data of Haggerty et al. (2002), subsequent to 8 
hr from the initiation of recording, showing the 

linear gradient estimate of  -1.48. 

A feature of the model discussed here is that 
particles exit from the hyporheic zone at the same 
point at which they entered. The present model is 
not therefore a general model of hyporheic zone 
transport because such zones may in fact be quite 
mobile in the sense of having flow paths in the 
direction of river flow over a considerable range 
of distance scales (Kasahara and Wondzell, 
2003). However, the long-tailing ability of the 
present model does indicate that multi-scale 
hyporheic flow is not a prerequisite for generating 
long arrival-time tails from tracer experiments in 
river systems with groundwater interaction. 



3. TEMPORAL MOMENTS FOR 
PARALLEL FLOW SYSTEMS 

3.2. Derivations 

It is evident that a system of stream tubes will 
generate a flux-weighted arrival-time distribution 
consisting of a finite mixture of the component 
arrival time distributions generated by the 
individual stream tubes. Without loss of 
generality, an equivalent model can be formulated 
in terms of a system of N stream tubes with equal 
contaminant fluxes. The mixture arrival-time 
distribution can then be written as the unweighted 
finite mixture distribution: 

3.1. Introduction 

Parallel flow models provide a convenient 
representation of one-dimensional contaminant 
dispersion by groundwater movement in aquifers 
with significant stratification, or in sub-river 
systems where there may be preferential flow 
paths along old channels. The concept is that 
water flow moves independently in some arbitrary 
number of independent stream tubes. The basic 
model of a parallel flow system for contaminant 
transport analysis is shown in Figure 5. There is a 
conceptual input plane which introduces a 
contaminant pulse into all the stream tubes 
simultaneously. These individual pulses then 
move in isolation until some discharge plane is 
reached after travel distance x where the 
contaminant contributions are mixed and the 
mixed concentration is monitored over time as an 
arrival-time distribution. 
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=
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where  is the arrival-time distribution and 

the component

( , )g t x
( , )if t x  distributions are the 

arrival-time distributions specific to the respective 
stream tubes. The required temporal moment 
distance expressions can therefore be obtained 
from the moments of the finite mixture 
distribution (4). 

 

Under advective-dispersive contaminant 
transport, the cumulant ratios of the component 

( , )if t x  distributions will remain constant and 
independent of x. Omitting the i subscript for 
now, define the set of cumulant ratios rZ  of a 

single ( , )f t x  distribution as: 

1 1 2/ /r r rZ rκ κ κ µ= = ≥′  (5) 

Figure 5. Schematic of isolated parallel stream 
tubes where contaminants are introduced at a 

vertical input surface on the left and emerge at a 
vertical mixing surface on the right (after 

Rasmuson, 1985).  

where 1µ′  is the first moment about zero 

(distribution mean), and  is the rth cumulant 
of the component distribution concerned. Because 
the 

rκ

rZ  values are constant cumulant ratios, they 

are independent of 1µ′  and hence are 

independent of tracer travel distance x . 

The concept of parallel groundwater flow systems 
dates at least to the work of Mercado (1967) who 
used a perfectly stratified aquifer model of purely 
advective tracer dispersion. There have been a 
large number of recent publications dealing with 
aspects of the contaminant arrival time 
distribution for the parallel model under various 
specific conditions. Part of these investigations 
have been directed toward the moments of the 
arrival-time distribution, or “temporal moments”. 

In general, any distribution’s rth moment about 
zero ( rµ′ ) can be written as a function of the 

distribution cumulants. For the second, third, and 
fourth moments about zero, these expressions are, 
respectively: 

2
2 2 1µ κ κ= +′    (6) To date, however, there have been no results 

presented of a simple temporal moment relation 
as a function of the parallel flow travel distance x, 
given arbitrary advective-dispersive transport in 
each stream tube. This section is concerned with 
the derivation of such a relation by way of using 
the standard moment relations of a finite mixture 
distribution model. 

3
3 3 2 1 13µ κ κ κ κ= + +′   (7) 

2 2
4 4 3 1 2 2 14 3 6 4

1µ κ κ κ κ κ κ κ= + + +′ +
     (8) 
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The corresponding expressions in terms of rZ  

and 1µ′  are obtained from (6), (7), and (8) by 

substituting with rκ 1rZ µ′

1

 (for ), and 

substituting  with 

2r ≥

1κ µ′ , giving: 

 

It follows from (9)-(11) that the corresponding 
moments of about zero can be expressed 
(omitting the summation range for brevity): 
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     (17) In the context of a given ( , )f t x

1

 distribution, it 
is evident from (9), (10), and (11) that the 
distribution moments about zero are evidently 
polynomial functions of µ′ , and therefore of x. 
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Turning now to the parallel flow system as a 
whole and reintroducing the i subscript, define 

and  respectively as random variables 

generated from  and 

t it
( , )g t x ( , )if t x , and 

define: 
 

( )Eφ = t     (12) 
The corresponding central moments of 

can now be obtained by substituting the 
 moments (16)-(18) into the standard 

statistical expressions giving distribution central 
moments as functions of moments about zero. 
This yields the first four central moments of 

 as simple polynomial functions of mean 
travel time 

( , )g t x
( , )g t x

( , )g t x
φ . These expressions are lengthy and 

are not reproduced here. However, after gathering 
constants the arrival-time central moment 
expressions, to r = 4, can be compactly 
represented as the polynomial in φ : 

1 ( )i i E iµφα = =′ t    (13) 

where the α values in (13) are constants 
independent of 

i

x . This constancy of the 
values arises because each stream tube has its 

own constant flow speed, causing each  to 

remain in constant ratio with . 

iα
( )iE t

( )E t

Define r iµ′ , r iµ , and  , respectively, as 

the rth moment about zero, rth central moment, 
and rth cumulant, of 

r iκ

i ( , )f t x . Similarly, 

rµ′ and rµ  are the rth moment about zero and 

rth central moment of . ( , )xg t
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µ β
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As noted in (5), the cumulant ratios specific to 
each ( , )if t x  are defined:  

where rµ is the rth central moment of the arrival-

time distribution and the nβ  terms are constants 

independent of φ . This polynomial relation 
presumably holds for all positive integer r, subject 
to the existence of the Z ratios. 

1 2/ rr i r i iZ κ µ= ≥′   (14) 

and the rth moment about zero of is the 
mean of the component distribution moments 
about zero: 

( , )g t x
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