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Abstract: The crucial role that the Mississippi River plays in meeting various water demands in North 
America necessitates adequate understanding of the dynamical changes that occur in the river system. 
Arguably, the phenomenon that needs the utmost and immediate attention is the sediment (bed) load 
transport, since the large quantity (in the order of hundreds of millions of tons per year) of sediment 
discharged by the river causes extensive problems to the activities that the river itself supports, such as 
wetland and floodplain habitats, biological and agricultural production, and commercial navigation. 
Furthermore, understanding the dynamics of bed load transport at different temporal scales (finer and 
coarser) is essential for undertaking short-term emergency measures as well as long-term river basin 
management. In an effort to address this issue, the present study investigates the dynamical behavior of bed 
load transport at five different successively doubled temporal scales (between daily and fortnightly scales), 
i.e. daily, 2-day, 4-day, 8-day, and 16-day. Specifically, the presence of low-dimensional deterministic 
behavior in the bed load dynamics is investigated, with an aim to possibly simplify the model complexity 
for modeling, prediction, and disaggregation purposes. The correlation dimension method is used to 
identify low-dimensional determinism. The bed load dynamics is represented through the reconstruction of 
a single-dimensional series in a multi-dimensional phase-space, and the variability (dimension) is estimated 
using the (proximity of the) reconstructed vectors (i.e. points) in the phase-space. The results indicate the 
presence of low-dimensional determinism in bed load series at each of the above five scales, suggesting the 
possibility of modeling their dynamics using only a few variables (in the order of 3 or 4). 
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1. INTRODUCTION 
 
The Mississippi River is one of the world’s 
major river systems in size, habitat diversity, and 
biological productivity. Of the world’s rivers, the 
Mississippi River ranks third in length, second in 
watershed area, and fifth in average discharge. It 
is the longest and largest river in North America, 
originating at Lake Itasca in northern Minnesota 
in the United States and flowing for about 3970 
km into the Gulf of Mexico in the south. The 
entire river basin measures about 4.76 million 
km2. The drainage area of the basin that lies 
within the United States is about 3.22 million 
km2. The main stem, together with its tributaries, 
extends over 31 states in the continental United 
States and covers about 41% of the land area 
(e.g. Chin et al., 1975). 

The important role that the Mississippi River 
plays in meeting various water demands in North 
America necessitates adequate understanding of 
the dynamical changes that occur in the entire 
river system. Arguably, the phenomenon that 
requires the most immediate attention is the 
sediment load transport, as the Mississippi River 
is a dominant mover of sediment and transports 
more sediment than any other river in North 
America (e.g. Meade and Parker, 1985). In spite 
of the large dams that have been built across its 
major tributaries, the Mississippi River still 
ranks sixth in the world in suspended sediment 
discharge to the oceans (e.g. Milliman and 
Meade, 1983). The average annual suspended 
sediment discharge to the coastal zone by the 
Mississippi River is as large as about 230 million 
tons (e.g. Meade and Parker, 1985). The large 
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quantity of sediment discharged by the river 
significantly affects the activities that the river 
itself supports, such as (wetland, open-water, and 
floodplain) habitats, biological and agricultural 
production, commercial navigation, and other 
human developments. 
 
Understanding the dynamical behavior of bed 
load transport is an extremely challenging task, 
due to the following reasons: 

1. Bed load occurrence and movement depend 
on a host of factors, such as water discharge, 
suspended sediment concentration, and size, 
shape, velocity and density of the sediment 
particles. The existing bed load estimation 
methods are designed linking bed load to 
water discharge and suspended sediment 
concentration (e.g. Einstein, 1943; Olive et 
al., 1996). However, there is not a simple 
relationship between these components. For 
instance, studies reveal that suspended 
sediment peak either lags the water 
discharge peak (e.g. Einstein, 1943) or 
arrives before the water discharge peak (e.g. 
Olive et al., 1996). Such linkages, therefore, 
may sometimes become unreliable. 

2. Even if such linkages were found to be 
reliable, any error in water discharge and 
suspended sediment concentration could 
eventually lead to an inaccurate estimation 
of bed load. Since discharge and suspended 
sediment concentration measurements 
always contain errors, corresponding errors 
in bed load estimation are inevitable. These 
errors often increase in a nonlinear pattern, 
because of the nonlinear behavior of these 
components and their relationship. 

 
The effects of these problems become much 
more prominent at finer temporal scales (e.g. less 
than daily) because: (1) discharge and sediment 
concentration measurements are usually not 
available at these scales; and (2) errors in 
measurements increase at finer scales, since the 
existing technology and equipment are generally 
insufficient. Unfortunately, estimation of bed 
load at finer scales is crucial, since much of the 
transport occurs during heavy flood events, 
which last only a very short period of time (a few 
hours or at the most a few days). On the other 
hand, bed load estimation at coarser scales may 
also be significantly affected by the errors in 
discharge and suspended sediment concentration 
measurements, since the data required at such 
coarser scales are obtained by simply adding the 
available data (giving rise to additional errors). 

In an attempt to avoid the above problems, 
Sivakumar (2002) and Sivakumar and 
Jayawardena (2002, 2003) introduced the 
concept of phase-space reconstruction (e.g. 
Takens, 1981) to the sediment transport problem. 
Such a concept uses the reconstruction (or 
embedding) of an available single-variable time 
series in a multi-dimensional phase-space to 
represent the underlying dynamics. The physics 
behind such a reconstruction is that a nonlinear 
system is characterized by self-interaction, so 
that a time series of a single variable can carry 
the information about the dynamics of the entire 
multi-variable system. Based on such a 
reconstruction and employing a local 
approximation prediction method (e.g. Farmer 
and Sidorowich, 1987), they attempted future 
predictions of suspended sediment concentration 
(Sivakumar, 2002) and bed load (Sivakumar and 
Jayawardena, 2003), respectively, at the daily 
scale in the Mississippi River basin. The 
outcomes revealed the usefulness of these 
methods, as very good predictions were 
obtained. The study by Sivakumar and 
Jayawardena (2002) provided further support to 
these studies, as the application of the correlation 
dimension method (e.g. Grassberger and 
Procaccia, 1983) indicated the possible presence 
of low-dimensional chaotic dynamics in the daily 
discharge, suspended sediment concentration, 
and bed load phenomena. 
 
Even though the above studies are encouraging, 
they have addressed only part of the overall 
problem, because of the following. 
Understanding sediment transport dynamics only 
at the daily scale (or any other single temporal 
scale) is not sufficient to address either the short-
term emergency measures or the long-term river 
basin management, as the transport dynamics 
change with time scale. This is particularly the 
case in the Mississippi River basin due to its 
large spatial extent and to the occurrence of 
frequent heavy floods, which influence the time 
scale (e.g. concentration time) at which the river 
flow and sediment transport occurs at the point 
of interest. As the sub-basin (at St. Louis, 
Missouri) studied in the above studies falls in the 
Lower Mississippi River basin and also as it has 
a drainage area of as large as 251,230 km2, the 
daily scale analyzed may be too short for any 
realistic interpretation. Therefore, investigating 
the behavior of the sediment transport dynamics 
at (many) different temporal scales is essential to 
provide reliable and realistic interpretations. 
 



 

In an effort to address this issue, the present 
study investigates the dynamical behavior of bed 
load transport phenomenon at five different 
successively doubled temporal scales (i.e. daily, 
2-day, 4-day, 8-day, and 16-day) in the 
Mississippi River basin (at St. Louis, Missouri). 
These scales,  between daily and fortnightly, are 
selected in such a way that they cover a fairly 
wide time scale and, therefore, represent the 
overall dynamical changes in the river system. 
Specifically, the presence of low-dimensional 
deterministic chaotic behavior in the bed load 
dynamics at these scales is investigated. The 
correlation dimension method is used as an 
indicator to identify the non-linear determinism 
(or to distinguish between chaotic and stochastic 
behaviors). The outcomes of this analysis could  
also provide important information on: (1) the 
predictability of bed load dynamics at these 
scales (and possibly others); (2) the presence of 
scaling that may exist between the dynamics at 
these scales; and (3) the appropriate framework 
for transformation of data between these scales. 
 
The organization of this paper is as follows. 
Section 2 presents a brief account of the 
correlation dimension method. Details of the data 
used, analyses performed, and results obtained 
are presented in Section 3. A discussion of the 
results is made in this section. Conclusions from 
the present study are reported in Section 4. 
 
 
2. CORRELATION DIMENSION 
 
In the present study, the correlation dimension is 
estimated using the Grassberger-Procaccia 
algorithm (e.g. Grassberger and Procaccia, 
1983), which uses the phase-space reconstruction 
of a time series to represent the underlying 
dynamics. For a scalar time series Xi, where i = 
1, 2, ..., N, the phase-space can be reconstructed 
using the method of delays, according to: 
Yj = (Xj, Xj+τ, Xj+2τ, ..., Xj+(m-1) τ)      (1) 
where j = 1, 2, ...., N-(m-1)τ/∆t, m is the 
dimension of the vector Yj, called as embedding 
dimension; and τ is a delay time taken to be 
some suitable multiple of the sampling time ∆t 
(e.g. Takens, 1981). For an m-dimensional 
phase-space, the correlation function, C(r), is: 
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where H is the Heaviside step function, with 
H(u) = 1 for u > 0, and H(u) = 0 for u ≤ 0, where 
u = r - |Yi - Yj|, r is the radius of sphere centered 

on Yi or Yj, and N is the number of points. If the 
time series is characterized by an attractor (a 
geometric object which characterizes the long-
term behavior of a system in the phase-space), 
then the correlation function C(r) and radius r 
are related according to 
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where α is constant; and ν is the correlation 
exponent or the slope of the log C(r) versus log r 
plot. If the correlation exponent saturates with an 
increase in the embedding dimension, then the 
system is generally considered to exhibit 
deterministic chaos. The saturation value of the 
correlation exponent is defined as the correlation 
dimension of the attractor. The nearest integer 
above the saturation value provides the minimum 
number of phase-space or variables necessary to 
model the dynamics of the attractor. If the 
correlation exponent increases without bound 
with increase in the embedding dimension, then 
the system is generally considered as stochastic. 
 
 
3. ANALYSES AND RESULTS 
 
3.1 Data 
 
Throughout the Mississippi River basin, 
sediment (and flow) data are measured at a 
number of locations. For the present study, bed 
load data observed in a sub-basin station of the 
Mississippi River basin at St. Louis, Missouri 
(US Geological Survey station no. 07010000) 
are considered. The sub-basin is situated between 
38°37′03″ latitude and 90°10′47″ longitude, on 
downstream side of west pier of Eads Bridge at 
St. Louis, 24.1 km downstream from Missouri 
River. The drainage area of this sub-basin is 
251,230 km2 (e.g. Chin et al., 1975). The natural 
flow of stream at the gaging station is affected by 
many reservoirs and navigation dams in the 
upper Mississippi River basin and by many 
reservoirs and diversions for irrigation in the 
Missouri River basin. 
 
Daily bed load measurements for the above 
station have been made available by the USGS 
from April 1948. However, there were some 
missing data before 1960. In order to avoid the 
uncertainties that could arise on the outcomes 
due to such missing data, only the period that has 
continuous data is considered. The data used 
herein spans over a period of about 22.5 years 
(amounting to 8192 values) starting on January 



 

1, 1961. Figure 1 shows the variation of the daily 
bed load series observed at the above station. 
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Figure 1. Variation of daily bed load data in the 
Mississippi River basin (at St. Louis, Missouri). 

 
In order to obtain bed load data corresponding to 
other temporal scales for the present analysis, the  
daily bed load values are aggregated (by simply 
adding) to four successively doubled coarser 
resolutions (i.e. 2-day, 4-day, 8-day, and 16-
day). Table 1 presents some of the important 
statistics of all the above five series. 
 
Table 1. Statistics of bed load data of different 
temporal scales from the Mississippi River basin 
(at St. Louis, Missouri). [Values in 106 tons] 
 
 Daily 

 
2-day 

 
4-day  8-day 

 
16-
day 

Data 
Mean 
Std. 
Max. 
Min. 
CV 
Skew 
Kurt 
Zeros 

8192 
0.300 
0.439 
4.960 
0.003 
1.463 
3.084 
13.21 

0 

4096 
0.600 
0.858 
8.140 
0.006 
1.430 
2.872 
10.67 

0 

2048 
1.200 
1.652 
13.92 
0.012 
1.376 
2.625 
8.377 

0 

1024 
2.401 
3.058 
21.15 
0.027 
1.274 
2.274 
5.987 

0 

512 
4.802 
5.468 
32.83 
0.077 
1.139 
1.950 
4.214 

0 
*Data = Number of Data; Std = Standard Deviation; 
Max = Maximum Value; Min = Minimum Value; CV 
= Coefficient of Variation; Skew = Skewness; Kurt = 
Kurtosis 
 
As Table 1 shows, there are no zero values in the 
five series. This eliminates the problem of 
underestimation of correlation dimension of 
these series, as the presence of a large number of 
zeros may significantly underestimate the 
dimension (e.g. Sivakumar, 2001). It is believed 
that data over a period of 22.5 years are long 
enough to represent the changes in the system, 
and data size may not be an issue in dimension 
estimation (e.g. Sivakumar, 2000). 
 
 

3.2 Analyses and Results 
 
The phase-spaces of the above five bed load 
series are reconstructed according to Eq. (1). 
Figure 2, for instance, shows the phase-space  
diagram of the daily series in two dimensions (m 
= 2) with delay time τ = 1, i.e. the projection of 
the attractor on the plane {Xi, Xi+1}. As may be 
seen, the projection yields a reasonably well-
defined attractor suggesting the possibility of 
deterministic dynamics [the projections of the 
other four series also yield reasonably well-
defined attractors, but, occupy slightly 
increasingly larger spaces in the phase-space]. 
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Figure 2. Phase-space diagram of daily bed load 
data in the Mississippi River basin. 
 
It must be noted, however, that an appropriate τ 
for phase-space reconstruction is necessary 
because only an optimum τ gives best separation 
of neighboring trajectories within the minimum 
embedding space, whereas an inappropriate 
selection of τ may lead to underestimation or 
overestimation of correlation dimension. In this 
study, the optimum values of τ for the phase-
space reconstruction are computed using the 
autocorrelation function method [see, for 
instance, Sivakumar (2000) for details of τ 
selection], and is taken as the lag time at which 
the autocorrelation function first crosses the zero 
line (e.g. Holzfuss and Mayer-Kress, 1986). The 
first zero value of the autocorrelation function 
attained is at lag times 99, 50, 25, 13, and 7 
respectively, for the daily, 2-day, 4-day, 8-day, 
and 16-day series, as presented in Table 2. 
 
The correlation functions and the exponents are 
now computed for the five bed load series. 
Figure 3(a) shows, for instance,  the relationship 
between the correlation integral, C(r), and the 
radius, r, for embedding dimensions, m, from 1 
to 15, for the daily bed load series, and Figure 
3(b) presents the relationship between the 
correlation exponent values and the embedding 



 

dimension values for this series [the figure also 
includes the relationships for the other four 
series]. 
 
Table 2. Correlation dimension results for bed 
load data from the Mississippi River basin. 
 

 Daily 
 

2- 
day 

4-
day 

8- 
day 

16-
day 

Data 
Acf 
CD 
Var 
CV 

8192 
99 

2.41 
3 

1.46 

4096 
50 

2.54 
3 

1.43 

2048 
25 

2.74 
3 

1.37 

1024 
13 

3.15 
4 

1.27 

512 
7 

3.62 
4 

1.13 
*Data = Number of Data; Acf = Autocorrelation 
Function; CD = Correlation Dimension; Var = 
Number of Variables; and CV = Coefficient of 
Variation 
 
As can be seen, the correlation exponent value 
increases with the embedding dimension up to a 
certain point, and saturates beyond that point, 
indicating the possible existence of deterministic 
dynamics. The saturation value of the correlation 
exponent (or correlation dimension) is about 
2.41, which is an indication that the dynamical 
behavior of bed load process at the daily scale 
may be low-dimensional chaotic, dominantly 
influenced by 3 variables. 
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Figure 3. Correlation dimension results for bed 
load data in the Mississippi River basin: (a) Log 
C(r) versus Log r relationship for daily series; 
and (b) Correlation exponent versus embedding 
dimension for all series. 

Saturation of correlation exponents and low 
correlation dimensions are observed also for the 
2-day, 4-day, 8-day, and 16-day bed load series 
[Figure 3(b)], with dimensions of 2.54, 2.74, 
3.15, and 3.62, respectively [Table 2]. This may 
be an indication of the presence of chaotic 
dynamics in the bed load dynamics at each of 
these scales, with the dominant number of 
variables being 3 or 4. 
 
3.3 Discussion 
 
A possible implication of the presence of low-
dimensional chaotic dynamics in the bed load 
phenomena at the daily, 2-day, 4-day, 8-day, and 
16-day scales may be that the scaling 
relationship between the properties of bed load 
dynamics at these scales (i.e. between daily and 
fortnightly scales) could also be chaotic. The 
possibility that the bed load dynamics at these 
scales as well as the scaling relationship between 
them could be represented using a model with as 
few as 3 or 4 variables is certainly encouraging 
from modeling point of view, as this would mean 
less complexity of the model and, in turn, less 
data, time, and computational requirements. 
Whether this is indeed true needs to be verified 
using prediction and disaggregation of bed load 
series. The prediction results for the daily bed 
load dynamics presented by Sivakumar and 
Jayawardena (2003) using a nonlinear 
deterministic local approximation procedure are 
certainly a positive outcome in this regard. 
 
As the dimension of a time series represents, in a 
way, the complexity of the underlying dynamics, 
the correlation dimensions (and the number of 
variables) indicate that the complexity of the bed 
load dynamics increases with increasing time 
scale, i.e. from finer to coarser scales. This may 
seem contradictory to reality, since it is generally 
believed that the dynamics of bed load (or any 
other) phenomenon at coarser scale(s) are less 
complex than that at finer scale(s). This, 
however, is not true, since the bed load dynamics 
at the coarser scale(s) could indeed be more 
complex than that at the finer scale(s). This may 
easily be explained based on the (flow and) bed 
load dynamics that occur in the Mississippi 
River basin. Due to the large spatial extent of the 
basin, it may take several days for the (flow and) 
bed load to reach the point of interest (St. Louis, 
Missouri) from the (farthest) upstream points. 
Therefore, the variability of (flow and) bed load 
transport may well be higher at 8-day or 16-day 
scales than that at daily or 2-day scales. The 



 

autocorrelation functions and the delay times 
[Table 2] for the five bed load series support this 
point, as a decrease in delay time, τ, is observed 
with aggregation of scale. In general, a slow 
decrease in the autocorrelation function is an 
indication of determinism (high correlation 
between successive values), whereas a rapid 
decrease indicates stochasticity (low correlation 
between successive values). The very slow 
decrease observed for the daily series (with τ = 
99), followed by slightly increasingly faster 
decreases for the 2-day, 4-day, and 8-day series 
(with τ = 50, 25, 13) to a very rapid decrease for 
the 16-day series (with τ = 7) indicate decreasing 
determinism (or increasing stochasticity) from 
finer to coarser scales. Similar observations are 
made also in the phase-space diagrams, as the 
daily series occupies a smaller space in the 
phase-space, whereas increasingly larger spaces 
are occupied by data at coarser scales. 
 
 
4. CONCLUSIONS 
 
The present study made a preliminary attempt to 
address the temporal scaling behavior of bed 
load dynamics in the Mississippi River basin. 
Analysis of bed load phenomenon at five 
different successively doubled scales (between 
daily and 16-day) using a nonlinear deterministic 
method (correlation dimension method) 
indicated the presence of low-dimensional 
chaotic dynamics, dominantly influenced by 3 or 
4 variables. Based on these results, chaotic 
dynamics in the scaling relationship between the 
properties of bed load dynamics at the above 
scales seem to be evident. Nonlinear 
deterministic models with 3 or 4 variables may 
be sufficient for modeling, prediction, and 
disaggregation of bed load dynamics in the 
Mississippi River basin, at least for/between the 
time scales studied herein. The usefulness of 
deterministic models for disaggregation of bed 
load dynamics is currently being studied. 
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