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Abstract: In the previous paper, it was shown that the cumulative effect of multiple one-dimensional 
velocity fluctuations can explain qualitative features of the observed scale dependent dispersivity in natural 
aquifers, but not the magnitude of the effect. It is plausible that in real systems the enhancement of dispersion 
caused by a single fluctuation may be larger than that derived for the 1-dimensional stepped fluctuation, 
because for example there are additional enhancement mechanisms in 2- and 3-dimensional systems. 
However this paper shows that to achieve the observed magnitude, it is not enough to increase the size of 
enhancement factor but in addition the rate at which the effect of a single fluctuation changes with fluctuation 
length and with position along the fluctuation sequence need to be modified.  Several variations are explored. 
Simple assumptions are shown to lead to dispersivity formulas in terms of purely algebraic power laws, while 
more elaborate assumptions yield expressions that are still analytic but contain non-elementary functions. In 
either case it is possible to find the required variation of the dispersivity over 3 or more orders of magnitude 
and with curve shapes that are consistent with historical observations Moreover, this is achieved with 
plausible parameter values, leading for example to the conjecture that in the observed systems the porous 
medium could not have been homogeneous on a scale of more than centimeters. The model presented is 
schematic in the sense that it contains some detail assumptions not derived from first principles, but is 
believed to capture the essentials of the mechanism that causes scale dependent dispersivity. It sets some 
boundaries for viable detail models, but within those boundaries the final predictions are not very sensitive to 
the detail  assumptions. A key merit of the treatment is that it identifies crucial variables that need to be 
measured or controlled in experimental studies. 
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1. INTRODUCTION 

Since the publication of collected experimental 
measurements of the dispersion of solutes in  
aquifers by Lallemand and Peaudecerf (1978), 
Gelhar (1986) and others, it has been known that 
the longitudinal dispersivity of natural porous 
media varies over several orders of magnitude 
with the scale of the experiment. While this 
dependence is roughly linear over a moderate 
range, it becomes non-linear for the complete 
range of 5 orders of magnitude covered by 
available data. It was shown in a previous paper 
by Verwoerd and Kulasiri (2003) that several 
features of the observed changes in dispersivity 
are explained by a model that incorporates the 
effects of a variable drift velocity, such as may be 
expected in a non-homogeneous medium, on 
solute dispersion. To facilitate calculation in 
detail, this model only considered 1-dimensional 
flow and modeled fluctuations in drift velocity as 
discrete steps. Perhaps not surprising for such an 
idealized model, the final results were not able to 
explain the magnitude of the observed effect 
although qualitative as well as some quantitative 
features, such as that the dispersivity increase is 

far slower than linear at large scales, did emerge 
without any need for specific parameter fitting. 

This paper presents an extension of that model, 
which endeavors to keep those successful features 
and the overall structure of the model, while 
identifying plausible modifications of details that 
do produce quantitative agreement with the 
observed magnitude of dispersivity changes. 

2. MODEL FORMULATION 

As a starting point, the essentials of the 1D-step 
model for fluctuations defined on a regular spatial 
grid with a spacing L can be summarised as 
follows: 

• A single macroscopic velocity 
fluctuation enhances dispersion above 
the diffusive value for an average flow 
velocity, by a factor approximated by 
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We refer to fm as the “enhancement 
factor” and the additive second term in 
this equation as the “enhancement”. 



• The fluctuation length 3 L is represented 
in this equation by a scaled spacing 
parameter λ = L/Λ. Here Λ is an inherent 
length scale defined in terms of the 
average drift velocity V, initial plume 
variance S2 and stochastic amplitude γ: 
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where P is the Peclet number of the flow 
and p the pore diameter of the medium. 

• As a plume traverses the medium, it 
encounters fluctuations in a sequence 
indicated by the index m featuring in  
equation 1. 

• The cumulative effect of the fluctuation 
sequence up to m = M , is obtained by 
multiplying the fm .  Expressing M in 
terms of a scaled traversal length Γ = 
x/Λ the combined enhancement factor 
F(Γ) is 
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• F(Γ) behaves differently above and 
below a transition point at Γ =1, as a 
result of the different nature of the 
dependence of fm on m , above and below 
m = 1/3λ .  

• Above 1, the behavior of F is essentially 
as Γ Q. Here the amplitude of the 
fluctuations determines Q, and the value 
of 0.32 that fits experiments is similar 
although somewhat larger than those 
estimated from the 1D-step model. 

• Below 1, F grows exponentially with Γ , 
and this behavior is compatible with the 
observations. 

• However, it only reaches a value 
proportional to eQ when  Γ = 1. This is 
far smaller than the F value of the order 
of 1000 at the transition point suggested 
by the observations [Gelhar 1986]. 

Consideration of these items shows that it is the 
last point that causes the failure of the model to 
achieve quantitative agreement. Because of the 
product form of F  , values above  Γ = 1 would 
automatically be raised to the required level if 
those below are adjusted to  yield a realistic value 
at the transition point. 

This leads us to the proposition that experimental 
evidence requires us to increase the values of the 
single fluctuation enhancement fm and/or their rate 

of decline with m, in the range of m values below 
1/3λ . 

Within the confines of the 1D-step model a 
plausible reason why equation (1) might 
underestimate fm is the neglect of non-Gaussian 
distortion of the plume by each step. The 
assumption of abrupt steps in the 1D-step model 
may also contribute to this because it has been 
shown [Verwoerd and Kulasiri, 2002] that e.g. 
linearly slanted steps have associated exponential 
effects on dispersion. Finally it has been 
established that in higher dimensional systems 
transverse variations in flow velocity, such as the 
stratified flow investigated by Gelhar et al (1979), 
can also enhance longitudinal dispersion.  

We leave the investigation of mechanisms 
responsible for a larger enhancement factor for 
later study and here focus on discovering how 
equation (1) needs to be modified in order to 
reflect the observed dispersivity behavior. For 
easy comparison we rewrite equation (1) to 
incorporate a modifying factor W(λ,m) in the 
form 
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To retain the 1D-step model for large traversal 
lengths where it works satisfactorily, we require 
that W(λ,m) = 1 at or above m = 1/3λ but assume 
that it is  >1 below the transition.  

Taking the existence of a transition as an 
experimental fact, and observing that m is a 
discrete variable, we conclude that a separation 
into two regions can only happen if 3λ << 1 . 
Other than that, λ is left free, but the simplifying 
assumption made in the 1D-step model that there 
is a single dominating fluctuation length is kept. 
Then λ remains constant while calculating F, and 
so the main question is how fm needs to depend on 
m in order to produce a value F(1) ≈ 1000 . 

3. TRIAL MODIFYING FUNCTIONS 

In choosing functional forms for W(λ,m) to 
investigate, it is desirable to keep the resulting 
form of fm simple enough that expressions for 
F(Γ) remains tractable, preferably splitting into 
factors that dominate above and below the 
transition, as was the case in the 1D-step model. It 
is helpful in this regard to separate the question of 
an assumed m-dependence into two parts: take the 
value of W(λ,m) at m = 0 as an unknown fixed 
value w >> 1, determined later, and try various 
expressions that allow W to decay from this value 
to 1 at the transition point in a plausible way. 



For the first trial, we note that equation (1) was 
arrived at in the 1D-step model as a simplifying 
expression that produced the correct dominating 
terms in series expansions about the points λ = 0, 
m = 1/2λ and m = ∞ . It was a remarkable feature 
in the underlying theory that all three of these 
coefficients were proportional to the same number 
Q. An obvious generalization would be to assume 
that the appropriate Q values can be different; in 
particular, that the Q value for the m = 0 limit is 
much larger than for the m = ∞ limit. To fully 
determine the expression for W it is also 
necessary to choose an interpolating Q value at 
the transition point, Qt.  It turns out that the 
expression for F becomes intractable unless the 
very specific choice 
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is made, and this leads to  
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where, in effect, Q0 = w Q∞ . However, when the 
calculation of F is done with this trial function, it 
is found that the value of F(1) is practically 
independent of  w and the required value cannot 
be achieved for any choice of w . The hyperbolic 
decay of fm values with m that is implicit in 
equation (6) is simply too fast to allow a 
sufficient accumulation of the enhancement 
effects to explain the observed dispersivity 
growth. 

This raises the question whether it is at all 
possible to achieve large values of F(1) by 
boosting the lower range fm by a plausible 
amount. To facilitate answering this question, the 
product in equation (3) can be split for Γ > 1 into 
the product of the low range part m ≤ 1/3λ and the 
high range part m > 1/3λ . In the high range part 
we use equation (1) for fm , in effect taking W = 1 
in that range. Then, we might make the extreme 
assumption that in the low range fm is a constant; 
if it is not possible to achieve the required 
enhancement from this, it would indeed be 
necessary to conclude that models of the kind that 
we are investigating are incompatible with 
observations. The corresponding expression for W 
is the second trial expression: 

 2 ( , ) (1 3 )W m w mλ λ= +  (7) 

In this case, it is easily seen that 
1/ 3(1) (1 3 )F Q w λλ= + which behaves like F(1) = 

eQ w for small λ, and with plausible choices of Q = 
0.32, λ = 0.001 and w = 25 a value of more than 
1000 is obtained. 

This shows that it is feasible to obtain the 
required overall enhancement by several orders of 
magnitude without an excessive value of w.  
However, the assumption implicit in equation (7) 
that each subsequent single fluctuation, up to the 
transition point, produces the same enhancement, 
does not appear very plausible. Neither does the 
discontinuous drop at the transition point that this 
implies.  

The next trial function eliminates these objections 
by assuming a linear decrease of fm that joins 
continuously to the high range values at m = 1/3: 

 3
3 2( , ) (1 3 )( 3 )W m m w m w mλ λ λ λ= + + −  (8) 

and  taking W = 1 for m ≥ 1/3λ as before. It is 
found that once more F can be calculated 
analytically, although a complicated expression is 
obtained, but the main result is that once more 
F(1) ≈ 1000 can be obtained for a reasonable, if 
somewhat larger, w value than that used in trial 2. 

In trials 2 and 3 the essential mechanism to 
achieve a large enhancement was to replace the 
hyperbolic decrease of fm , by a constant and a 
linear decrease respectively. The final set of trial 
functions aim to revert closer to the original form 
by retaining the hyperbolic term, but considering 
it to be the first term in a series expansion about 
the transition point and so taking W to be of the 
form: 
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where g is a coefficient still to be chosen.  This 
expression stays approximately constant at the 
value w for small m, becomes linear near the 
transition point and saturates to (w+g) at large m .  

For trial 4, we make the simplest possible choice 
of taking g = 0. This gives a behavior of  fm 
intermediate between those of trials 2 and 3 and 
as could be expected, once more F(1) ≈ 1000 is  
obtained for a w value intermediate between those 
of trials 2 and 3. 

Trial 5 is constructed by choosing the value g = 
2(1-w) , which ensures continuity at the transition 
point. The resulting decline of fm is sharper than 
in trial 3. The drawback of the more complicated 
form of W in this trial is that it is no more possible 
to reduce the resulting F to analytical form in 
terms of simple functions; instead an expression 
in terms of Pochhammer functions of an irrational 
and possibly complex argument is obtained. The 
result of numerical evaluation confirms that also 
in this case the required enhancement is obtained.  

Trials 2-5 all rely on splitting the range of the m-
product in equation (3) so that tractable 



expressions for the low m factor could be 
obtained while maintaining the high m factor, as it 
already reflects the observed behavior. As trial 5 
already leads to abandonment of the tractability 
aim, there is no point in enforcing the range 
splitting either. So finally, trial 6 reverts to a 
single product expression over the whole range, 
and makes the choice g = (1-w) to ensure that W = 
1 holds when m >> 1/3λ .  Once again, numeric 
evaluation is necessary, but the required 
enhancement values are attained and moreover 
the kink in the W-curves of trials 2-5 is 
completely eliminated to give the most plausible 
behavior of all the trials considered. 

In the work so far, w has been taken as a constant, 
because any λ-dependence that it has, is not 
relevant for calculations based on a fixed λ value. 
On the other hand, λ itself is unknown except that 
it has to be << 1. So knowledge of how w 
depends on λ may be used to estimate λ, once a 
suitable w value has been found e.g. by fitting 
F(Γ) curves to experimental observations.  

In the 1D-step model, as approximated by 
equation (1) , the enhancement produced by a 
fluctuation is just proportional to its scaled length 
λ . It is plausible that the enhancement should 
vanish as λ → 0 , but at the other extreme where  
λ → ∞ , such behavior is not plausible. Indeed, it 
has been shown [Verwoerd and Kulasiri, 2001] 
that the effects of a single step decays away from 
the step on a length scale related to the extension 
of the contaminant plume, so the effects of a 
stepped fluctuation must also become negligible if 
the fluctuation length is much larger than the 
plume extension. Indeed, the unlimited increase 
of the enhancement with λ is just an artifact of 
approximating fm  in the 1D-step model by the 
dominating term at λ = 0; the full expression 
deviates from linearity as shown in figure 1.  

A simple assumption that vanishes at λ → 0 while 
avoiding unrealistic growth at large λ values, is a 
fractional power law: 
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Also shown in figure 1, is a comparison of this 
formula for n = 1/3 with the actual curve obtained 
from the 1D-step model; it represents a fairly 
uniform increase of the enhancement beyond the 
1D-step model values.   

 w 

� 

Figure 1. Eq (10) (solid line) compared to the λ-
dependence of the 1D-step model (dashed) and its 
linear approximation (dotted). 

 In addition, it is compatible with the w-values of 
the order of 25 to 50 at λ = 0.001 that were 
obtained from the trial functions above.  Similar 
agreements can be obtained with other n values 
but only within fairly narrow limits of the order of 
0.2<n<0.6, depending on what is considered a 
reasonable range for λ. 

4. COMPARING TRIAL FUNCTIONS  

The trial functions proposed above represent quite 
a large range of modification of the 1D-step 
model enhancement as function of m, as 
demonstrated by figure 2. For comparison, the 
same value w = 25 was used for all curves: 

 

1 10 100 1000 10000 

10 

20 

30 

40 

50 
W1 
W2 
W3 
W4 

W5 
W6 

m 

W 

Figure 2. Trial modifying functions as functions 
of fluctuation count m. 

Figure 3 shows the dispersivity curves calculated 
from the split range trial functions W2 to W5, via 
the cumulative enhancement factor F, and 
compares these to experimental values.   

Parameters were chosen by the following 
procedure. Inspection of the measured values 
suggests that the transition between low and high 
range behaviors takes place at approximately 30 
meters, so this was chosen as the length scale Λ. 
To obtain a smooth buildup of the dispersivity to 
the observed large value at the transition point 
without an excessive enhancement by a single 
fluctuation, a large number of factors are needed 
in the product appearing in equation (3) which 
means that λ must be quite small. We chose λ = 



 

0.001,  but this value can be adjusted by an order 
of magnitude either way without affecting the 
results significantly. The combination of the 
chosen Λ and λ values imply that the physical 
length of the dominating fluctuation is about 9 
cm, which also appears very reasonable from a 
physical point of view. The value of Q is simply 
the slope of the high range dispersivity on a 
logarithmic plot, and from the data a value of Q = 
0.32 has been chosen. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Dispersivity calculated from split range 
trial functions W2 to W5, compared to 
experimental values [Fetter (1999)and 

Gelhar(1986)].  Plot styles as for figure 2. 

This leaves only the single parameter w to be used 
for fitting the calculated dispersion curves to the 
data.  The values obtained by manual adjustment 
are w = 20, 38, 29, 64 for trials 2, 3, 4 and 5 
respectively, and these yield the curves shown in 
figure 3, all of which are in reasonable agreement 
with the measurements. 

A striking feature of the plots is that despite wide 
variations in the underlying trial functions, the 
dispersivity curves are very similar. This 
observation applies even more strongly if the 
implausible trial 2 is excluded. That gives some 
retrospective justification for the rather ad hoc 
way in which the trial functions were constructed.  

A similar comparison is done next for the 
continuous range trial function W6.  In this case, 
the transition takes place more gradually and this 
is accommodated  by a slight downwards 
adjustment of the assumed scale length Λ to a 
value of 10 m.  A consistent physical fluctuation 
length is maintained by correspondingly 
increasing λ to 0.0035.  Manual fitting then leads 
to w = 24 , and the resulting dispersivity curve is 
shown in figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Dispersivity curve (solid line) 
calculated from continuous range trial function 

W6 compared to experimental values. 

It is seen that an even better fit to the observations 
is obtained, suggesting that the rather sharp 
transitions in figure 3 was an artifact of the range 
splitting simplification used for the initial trials. 

In none of the results presented was an optimized 
fit of parameters attempted, as this would not be 
justified in view of the large variations in the 
measured data collected from many experiments.  
Instead, the point made is that with only a few 
parameters, of which only one is freely fitted 
while the rest are determined by their physical 
interpretation and qualitative features of the data, 
an excellent representation is obtained of the 
rather complicated observed dispersivity behavior 
encompassing about 4 orders of magnitude in size 
and 5 in spatial range. 

As further confirmation of the plausibility of the 
model, figure 5 shows the actual single 
fluctuation enhancement values represented by 
the parameters that fit the data. 

For the 1D-step model, the enhancement by the 
first fluctuation would be 0.1%; but in order to fit 
observations, this is increased to 2 % for trial 6 
and somewhat higher values for the split range 
models.  While the increase relative to the 1D-
step model is substantial, the effect of any single 
fluctuation remains only a small perturbation of 
the background diffusive plume growth. There is 
obviously a reciprocal relationship between this 
behavior and the value of λ . For example, at the 
extreme of choosing 3λ = 1, only a single 
fluctuation would fit into the interval covered by 
the length scale. Hence not only would there be a 
single discontinuous jump in the dispersivity, but 
the enhancement would have to be  the absurd 

     



value of 1000. This argument shows that 
whatever one considers to be a plausible 
maximum for the single fluctuation enhancement, 
places an upper limit to the value that can be 
chosen for λ . The values presented above shows 
that it is possible to reconcile the enhancement 
value and the fluctuation length in a plausible 
way. 

Figure 5. Enhancement by fluctuation number m. 
Dotted line is the 1D-step model, other curves as 

in figure 2. 

Yet another plausibility test of the model is to 
compare the value of the length scale Λ as 
inferred from the data with the expression in 
terms of flow parameters that is given by equation 
(2). As a ballpark figure we take the pore 
diameter as p = 10-4 m and the initial Gaussian 
plume variance as given by S = 10-2 m. Then the 
Λ values of 10 or 30 m as used above implies a 
longitudinal Peclet number in the range 5 to 15, 
which appears quite reasonable. Most likely the 
actual values of  P, p and S  in the various 
experiments from which data were collected for 
figures 3 and 4 were all different, which may 
account for some of the variability in the 
measured values. 

Trial function W2 may be considered an upper 
limit on plausible W-functions as it does not allow 
for any decrease  in the enhancement as the plume 
is dispersed, while a lower limit must be 
somewhere between W1 (which attenuates too 
fast to fit the data) and W5 that does fit. These 
limits give some guidance on viable assumptions. 

5. CONCLUSIONS 

The model presented here succeeds very well in 
explaining the rather dramatic changes of 
observed dispersivity over several orders of 
magnitude as a function of the length scale of the 
experiment. 

The final  results are expressed in terms of a set of 
four parameters, but it is emphasized that the 
model is not just a curve fitting exercise. Each of 
the parameters has a particular physical 
interpretation, and the values obtained have been 

shown to be physically meaningful in terms of 
this context. Moreover, the structure of the model 
has a solid grounding on a detailed first principles 
calculation of the interaction between dispersion 
and drift velocity variations in a 1-dimensional 
flow. In fact, only one aspect of the 1D model 
needed to be modified: the enhancement of 
dispersion by a single fluctuation needs to be 
boosted by a considerable amount to reflect the 
observed dispersivity rise.  We expressed that 
boost by a modifying function W, and showed 
that a considerable range of postulated  W 
functions give similar levels of agreement of 
calculated dispersivity curves with measured 
values.  

The main outstanding issue to be addressed in 
future elaborations of the model is to identify 
mechanisms for the required boost and hence to 
derive W in a systematic and detailed way. Some 
refinements of the 1D model are still possible, but 
it seems likely that the major source of the boost 
will be from additional mechanisms for 
interaction between dispersion and velocity 
fluctuations coming into play in 2- and 3-
dimensional systems. 
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