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Abstract: Tidal motions of the water table adjacent to a sloping beach are investigated theoretically. It is 
shown that a previous analytical solution by Nielsen (1990) only contained part of the first-order solution. A 
new approximation is introduced to provide a model more consistent with the special case of a vertical beach. 
Comparisons between the Nielsen (1990) and the present solutions indicate that the former solution is 
inadequate for a beach with small slopes. Numerical examples demonstrate the significant influence of 
higher-order components and the beach slope.  
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1. INTRODUCTION 

The groundwater table adjacent to a sandy beach 
is of great interest in the management of coastal 
aquifers. In particular, an accurate prediction of 
dynamic groundwater hydraulics in coastal zones 
is important to erosion (Grant, 1948), saltwater 
intrusion (Dagan and Zeitoun, 1998) and 
biological activity (Pollock and Hummon, 1971, 
McArdle and McLachan, 1991). Most studies of 
coastal aquifers are based on the Boussinesq 
equation, (Dagan, 1967, Bear, 1972, Parlange et 
al., 1984, Barry et al., 1996, Li et al., 2000). 

Most previous investigations have been limited to 
the case of a vertical beach. Only a few 
researchers considered the case of a sloping 
beach. Nielsen (1990) and Li et al. (2000) used 
analytic solutions of the Boussinesq equation to 
examine the effects of a moving shoreline on tide-
induced water table fluctuations. In Nielsen’s 
solution only part of higher-order components are 
included, the details will be discussed later. Li et 
al. (1997) further considered capillary effects on 
tidal fluctuations through numerical simulations, 
while some field studies have been reported in 
Raubenheimer et al. (1999). 

In this paper, a new analytical solution will be 
derived. The new approximation is applicable to a 
large range of beach slopes. Based on the new 
solution, the effect of high-order components and 

different beach slopes on tidal fluctuation in 
coastal aquifers will be investigated. 

2. BOUNDARY VALUE PROBLEM 

2.1 Problem set-up 

The flow is taken to be homogeneous, isothermal 
and incompressible in a rigid porous medium. The 
configuration of the tidal forced dynamic 
groundwater flow is shown in Figure 1. 

 

 
Figure 1. Definition sketch. 

 
In Figure 1, h(x,t) is the total water table height 
and D is the average height of the water table at 
the coastline. Hence the condition that the water 
table height at the boundary of the ocean and 
coast (i.e., x= ) is equal to the specified tidal 
variation becomes  
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Here the aquifer thickness (D), amplitude 
parameter (α) and the frequency (ω) are 
prescribed constants.  α=A/D is a dimensionless 
amplitude parameter, representing the ratio of the 
maximum tidal variation, A, to the average height 
of the water table, D.  Note that we have 
neglected the seepage face. If β  is the slope of 
the beach, the horizontal extent of the tidal 
variation is  

2.2 Non-dimensional parameters 

Before constructing the solution, it is convenient 
to rewrite the governing equations in a 
dimensionless form. Thus, we define the new 
non-dimensional variables  
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Since is a time-dependent boundary, we 
also introduce a transformation so that in the new 
coordinates the boundary is fixed (Li et al., 2000):  
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The standard linear solution has a decay length, L, 
defined by (Nielsen, 1990)  
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where TST cos)(0  and )cot(β=S . 

 Then  L is the length scale for significant variations in 
the x direction. K and ne are the hydraulic 
conductivity and the porosity of the soil 
respectively. Here we consider shallow water 
flows and hence define the shallow water 
parameter, ε, as  
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where f is a dependent variable. 

2.3 Shallow water expansions  

K
Dn

L
D e

2
ωε == . (4) Following Dagan (1967), the standard non-linear 

kinematic boundary condition is expanded in 
powers of ε:  
 This represents the ratio of the water table height 

to the linear decay length. Note that ε is entirely 
controlled by the material constants and the 
prescribed boundary condition (1). For shallow 
water flows, 1<<ε . Thus in this problem there 
are three independent parameters defined by the 
material and the boundary condition: the shallow 
water parameter, ε, the amplitude parameter 
α and the beach slope β.We construct solutions 
valid for small ε and α and a large range of β.  
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resulting in the following equations up to the 
second-order:  
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Following Barry et al. (1996), the fluid potential 
(φ) satisfies Laplace’s equation since we assume 
the fluid to be incompressible (Bear, 1972), i.e.  111111
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Note that (11a) is the well-known Boussinesq 
equation. The subscripts X1 and T1 denote 
derivatives with respect to X1 and T1.  

where gpz ρφ /+= . The fluid potential in (5) is 
to be solved subject to the following boundary 
conditions, 

These are to be solved subject to (1) and the 
condition that, far from the coastline, the water 
table fluctuations should vanish:  
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The appropriate boundary conditions for (11) at 
each order are then  
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ANALYTICAL SOLUTIONS )](2cos 11
2 1 XTe X −− −  (18) 

3.1 Previous solution-Nielsen (1990) 
Solution of O(ε) 

Nielsen’s (1990) solution is re-organised in a non-
dimensional form here: 

Following the O(1) procedure, H1 is expanded as 
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Substituting (19) into (11b), the first-order 
boundary value problems are   

where SLAN αεβε == /)cot( .   
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Note that Nielsen (1990) uses  as the 
perturbation parameter. This parameter ( ) can 
be greater than unity when the slope is small. 
Then this approximation cannot be used and the 
solution is invalid for certain value of slopes. 
Also, 

Nε

Nε

Nε = 0 when β =π/2 for a vertical beach, so 
(13) reverts to the linear solution.  In this analysis 

Nε  will not be used as a small parameter, but it 
will be assumed to be an O(1) parameter.   
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The solution of (20a), subject to (12) and (13), is 

011 =H , and the solution of (20b) is 
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only consider the zero-order and first-order (in ε) 
solutions in this paper.  In summary, the present solution can be written as 
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to introduce α as a second small parameter. In 
general, the tidal wave amplitude (A) is small 
compared with the mean tide level (D) and hence 
α<<1. Then H0 is expanded as 
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Substituting (15) into (11a), the zero-order 
boundary value problem can be sorted in order of 
α: 

 
where 111 XT −=θ , 112 22 XT −=θ and 
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Comparing (14) and (22), it is clear that Nielsen’s 
solution only contains part of (22), and his 
solution does not satisfy the boundary condition 
at x=x0, i.e., )cos()),(( 0 tADttxh ω+= .  

 
Equation (16a) and (16b) are the linear equations 
for a vertical beach. The solutions are (Parlange et 
al., 1984) 

 



4.2 Effects of higher-order components 3.3 Solution for a vertical beach 

One objective of this study is to investigate the 
effects of the higher-order component. Figure 3 
also demonstrate the influence of higher-order 
components on the water table level in a sloping 
beach. Significant differences between linear and 
second order solutions have been observed. This 
difference increases as the slope decreases.  

As mentioned in 3.1, when β  = π/2 Nielsen’s 
(1990) solution reverts to the linear solution. If 
we substitute β  = π/2 into (22), i.e., S=0, X=X1, 
we have 
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the effects of slope. Figure 3 also illustrates the 
tide-induced water table level (H) versus time (T) 
for various values of the slopes. Among these, 
β=90o represents the case of a vertical beach. The 
figure clearly indicates that the water table level 
decreases as the slope decreases.  

 
This is identical to the previous solution for a 
vertical beach (Plarange et al., 1984). 

4. RESULTS AND DISCUSSIONS 

The objectives of this paper are to derive a 
completed first-order solution (ε) and to 
investigate the effects of (1) higher-order 
components and (2) the slope of the beach, on the 
tide-induced water table fluctuations in a coastal 
aquifer.  

CONCLUSIONS 

In this study, a new perturbation approximation 
for the tide-induced water table fluctuations in a 
sloping beach is proposed. The shortcoming of 
the previous work has been overcome in the new 
approximation. The special case (i.e., for a 
vertical beach) can be obtained directly from the 
new solution. Numerical examples demonstrate 
the significant influences of higher-order 
components and the beach slope. 

4.1 Comparisons with Nielsen (1990) 

By comparing (22) and (14), it is clear that 
Nielsen’s (1990) solution excluded the terms for 
cos )4/( 2 πθ +

cos( 1
1 π−X

 and the non-oscillating term, 

 and the O( ). This indicates 
that the first-order solution in Nielsen is not 
complete.  

)4/−e X 2α The solution presented here is up to the zero-order 
boundary value problem, which is based on 
Boussinesq equation and first-order correction. 
The second-order solution and more detailed 
discussions will be reported in Jeng et al. (2003). Numerical comparisons between Nielsen’s 

solution (14) and the present solution (22) are 
plotted in Figures 2 and 3 for various slopes of 
beach. 
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As shown in Figure 2, the solution proposed by 
Nielsen (1990) does not match the boundary 
condition at X=X0, which can be seen in the 
figure. A significant difference between two 
solutions near the intersection of ocean and inland 
is found in the figure, especially for small slope 
(Figure 2d).  
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Figure 2. Comparisons between Nielsen (1990)’s solution, dashed line, and the present solution, solid line 

for α=ε=0.35, T=0. 

 

 



 

 
Figure 3. Comparisons of Nielsen (1990) and the present solutions (α=ε=0.35, X=1) 
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