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Abstract:  High climate variability in Australia leads to even higher variability in streamflow, and therefore 
difficulties in managing water resources for economic, social and environmental outcomes. Thus there is a 
need for skilful seasonal forecasting tools with useful lead-times. Forecast tools based on the El 
Nino/Southern Oscillation (ENSO) such as the Southern Oscillation Index (SOI) and Sea Surface 
Temperature (SST) are currently used to forecast seasonal rain in Australia, and have similar value for 
predicting streamflow. This paper evaluates the skill of persistence as a tool for forecasting streamflow on 
large and small catchments in Australia, and makes some comparisons with the skill of SOI-based forecasts. 

Monthly streamflow records for 320 unimpacted Australian gauging stations were assessed using an 
advanced prototype of the Australian Rainman Streamflow version 4.3 software package. This data set had 
302 stations with historical time series data from state water agencies and 18 stations with extended/modelled 
data for small catchments. The following factors were systematically examined in each region of Australia: 
(1) duration of the predictor period, (2) lead-time, and (3) duration of the period to be forecast. The statistical 
significance of persistence as a forecasting tool was assessed via serial correlation, Kruskal-Wallis tests and 
cross-validated LEPS skill scores. Results were evaluated spatially to compare regional responses across 
Australia.  

This study showed that persistence is a useful predictor of streamflow in all seasons over much of Australia, 
with lead-times that are longer than that of ENSO-based forecasting tools. The lag relationship between prior 
and predicted streamflow was strongest with a lead-time of zero. The strongest relationships were in south-
eastern Australia during late spring and early summer and in northern Australia during autumn and early 
winter. 
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1. INTRODUCTION 

Australian rainfall is highly variable and related 
streamflow can display an even greater level of 
variability. Management of water resources is 
difficult in this regime and this has consequences 
for the planning and delivery of environmental, 
social and economic outcomes. Persistence in 
streamflow is the relationship between 
streamflow in one period of time and that in the 
following period of time. A portion of the 
incident rainfall in a catchment is temporarily 
stored and this creates a lag in the subsequent 
streamflow which is expressed as a persistence or 
memory of flow conditions within a catchment. 
Chiew et al. (2000) found that serial correlations 
or persistence of streamflows in Australia were 
higher than those found for rainfall, and 
Simmonds and Hope (1997) established that the 
persistence of monthly rainfall in the eastern 
states was largely due to El Niño-Southern 
Oscillation (ENSO). 

Seasonal forecasting of rainfall using indices of 
ENSO such as the Southern Oscillation Index 
(SOI) is well established and in common use in 
Australia (Stone and de Hoedt, 2000) and the 
method has also been applied to forecasting of 
streamflow (Chiew et al., 2000). The impact of 
ENSO on streamflow is up to twice that on 
rainfall (Clewett et al., 2000), and thus ENSO 
also has important influences on the 
characteristics of streamflow.  

There is a need to forecast flows with useful lead-
times that provides some level of ‘skill’ to the 
user. The impacts of the inter-annual variability of 
streamflow on the management of water resources 
can be reduced with the use of skilful seasonal 
forecasts. This includes use of persistence via 
serial correlation to improve prediction of 
seasonal flows (Chiew et al., 2000). The analyses 
in this paper were performed on a larger set of 
point data time series to improve the geographical 
coverage. Characteristics of the persistence of 



streamflow include the duration of the predictor 
period, the lead-time of the forecast and the 
duration of the predicted streamflow. This paper 
investigates the influence of each of these 
characteristics in providing a useful and skilful 
forecast. The length of predictor period was 
investigated by Chiew et al. (2000), although the 
most effective duration was not identified. This 
paper presents the results for a number of 
predictor durations for each season. Chiew et al. 
(2000) found that the lag-one (referred to as lead-
time of zero months in this study) correlation with 
runoff was significant throughout the year and 
that there was a large difference in the 
correlations between lag-one and lag-three (lead-
time equals two months). Lead-times of 0, 1, 2, 3 
and 4 months are examined methodically in this 
paper. This study applies measures of statistical 
significance and skill scoring to probabilities of 
forecast streamflows, thereby enabling the 
predictor indices of persistence and average SOI 
to be compared. 

The combination of the characteristics of lead-
time, duration of the predictor period and duration 
of the predictand enables the formulation of 
useful targeted forecasts. These forecasts can be 
targeted for tactical and strategic decision-making 
for management of water resources and 
agricultural production. 

Some comparisons with an SOI based forecast 
will be presented. 

2. DATA AND METHODS 

Historical time series of streamflow were sourced 
from the data set compiled in the Land & Water 
funded Rainman Streamflow project QPI 39 
(Clarkson et al., 2000) and used in the 
StreamFlow supplement to Australian Rainman 
(Clarkson et al., 2001). The main data was 
monthly historical observations for 345 locations 
throughout Australia sourced from the eight state 
and territory water agencies across Australia. The 
mean length of streamflow in these data was 65 
years and ranged from 30 to 130 years. Stations in 
which median streamflow was zero were deleted 
from the persistence analyses (43 stations). An 
extended data set was also used for a further 107 
stations from all Australian states excepting 
Queensland and NSW. This data set was derived 
by rainfall-runoff modelling of small catchments 
(less than 2000 km2) using a simplified version of 
the HYDROLOG model (Chiew et al., 2000, Chiew 
and McMahon, 1994, Clarkson et al., 2000). The 
length of record for each station in the extended 
data set was 98 years (1901-1998). Where 
historical data was available for a location it was 
included for analysis in preference to extended or 
modelled data. This deleted all but 18 of the 

extended stations.  The 320 locations in the 
analyses are shown in Figure 1. 

 
Figure 1.  Location of the 320 streamflow 
stations used in the persistence analyses. 

Seasonal forecasts of streamflow at each location 
using persistence were made by: (a) calculating 
seasonal streamflow in each year from the 
historical (or modelled) records of monthly 
streamflow, (b) classifying these seasonal totals 
into three groups based upon the terciles of 
streamflow in the preceding predictor period, and 
(c) calculating the probability distribution of 
seasonal streamflow within each group to define 
the forecast probabilities of seasonal streamflow. 

Seasonal forecasts using the SOI were made in a 
similar way using the method of Clewett et al. 
(1991) and monthly values of the Troup SOI from 
the Bureau of Meteorology. The average value of 
the SOI in the three-month predictor period was 
used to partition streamflow in the forecast period 
into three groups as follows: average SOI below –
5, –5 to +5, and above +5. The probability 
distribution of streamflow of each group was used 
to define the streamflow forecast. 

Forecasting skill was assessed in several ways; 
(1) percentage of stations with statistically 
significant forecast skill, (2) correlation, and (3) 
mean skill score as defined below.  Statistical 
significance was calculated using the non-
parametric Kruskal-Wallis test (K-W) (Conover, 
1971) and Linear Error in Probability Space 
(LEPS) skill scores (Potts et al., 1996).  The K-W 
test was deemed significant if the probability of a 
result being not due to chance was >= 0.9.  

The K-W test is useful for assessing skewed data 
that occurs frequently in streamflow and is similar 
in power to the one-way F test (Conover, 1971). 
The LEPS method of assessing forecast skill is 
useful because it enables comparison of observed 
and predicted probabilities. Cross-validation was 
used in the LEPS analyses to further reduce 
forecast errors caused by artificial skill. 



The LEPS skill scores were calculated using cross 
validation and scaled to account for the number of 
years of data at each location (standardised to 100 
years) and the number of classes in the forecast 
system. This scaling used the method of Clewett 
et al. (2003, in preparation) and forecasts were 
defined as significant if the cross validated scaled 
LEPS skill score was >= 7.6. 

Changes in seasonal forecast skill due to 
persistence were systematically examined with 
respect to changes in duration of the predictor 
period, lead-time and forecast period. The 
duration of the predictor period was examined by 
adjusting it from one to 12 months. Lead-time 
(i.e. the time interval between the predictor period 
and the forecast or predictand period) was 
adjusted from zero to four months. The length of 
the forecast period was adjusted from one to 12 
months but was kept constant at three months in 
most analyses for the following seasons: January 
to March, April to June, July to September, 
October to December. These seasons were chosen 
to reflect the geographical differences in rainfall 
seasons across Australia and to have some 
relevance to the timing of water management 
decisions. 

Changes in seasonal forecast skill associated with 
changes in lead-time were also evaluated using 
the average SOI (three-month predictor period 
and three-month forecast period) at the same lead-
times. These analyses were performed for all 320  
Australian data locations (see Figure 1) and then 
sorted for states and territories to reveal  
geographical differences. Queensland was split 
into two regions north and south of the Tropic of 
Capricorn (Qld[N] and Qld[S]). 

All analyses of streamflow data including 
statistical testing of seasonal forecasts were 
carried out using an advanced version 4 prototype 
of the Australian Rainman Streamflow software 
(Clewett, 2003; Clewett et al., 2003). 

3. RESULTS  

Effects of predictor period on forecast skill 

Streamflow persistence using a duration of one 
month in the forecasting tool gave the highest 
skill (% of significant stations) (Table 1).  

Increasing the period to two or three months 
caused only a slight reduction in skill, but beyond 
three months there was a rapid decline. 

 

Table 1. Effect of length of prior streamflow 
period on forecasting skill using persistence (lead-
time zero). 

Length of prior period (months) 

 1 2 3 6 9 12  

Seas. % of stations with scaled LEPS >=7.6 Avge 

JFM 63 60 53 39 39 40 49.0 

AMJ 51 49 40 28 32 36 39.2 

JAS 84 83 84 70 48 38 67.7 

OND 71 70 65 58 59 45 61.2 

Avge 67.1 65.7 60.4 48.5 44.3 39.5  

Seasonal and regional influences 

Monthly serial correlation was extremely variable 
and ranged from near zero to 0.98. The mean for 
all stations over all months was 0.39. Stations 
with the highest correlations were in southern 
Australia. For example, the mean of the 12 
monthly serial correlations for the Tarago River 
in Victoria was the highest in Australia and was 
0.77. Monthly correlations were generally highest 
in late winter / spring with the mean correlation 
for all Australian stations during this period of 
0.5. Correlations were generally lowest in autumn 
with the mean for all stations equal to 0.3. The 
single month serial correlation across Australia is 
strongest in July/August (Table 1). 

The regional differences in forecasting skill using 
persistence of flow are presented in Table 2 with 
values for the four seasons. 

Table 2. Regional differences in forecasting skill: 
Percent stations with scaled LEPS skill score >= 
7.6  (Duration of predictor period is one month, 
lead-time is zero). 

 No.S
tns 

Jan-
Mar 

Apr-
Jun 

Jul-
Sep 

Oct-
Dec 

Avge 

 Qld(N) 21 33 71 76 52 58.3 

Qld(S) 31 42 58 68 19 46.8 

NSW 109 59 70 94 85 77.1 

Vic 97 85 29 78 81 68.3 

Tas 8 88 38 62 100 71.9 

SA 12 50 8 92 83 58.3 

WA 19 47 21 90 47 51.3 

NT 15 40 67 67 27 50.0 

ACT 7 86 100 100 100 96.4 

The lowest percentages were those for southern 
states in late autumn. Northern Australian 
locations demonstrated strong persistence 
relationships for April-June and were weakest in 
January-March. Percentages of significance were 
relatively high across Australian regions for the 
July-September period. New South Wales, ACT 
and Tasmania have the highest levels of 
significance. The other measures of forecasting 



skill were consistent with Table 2 values across 
geographical regions and seasons (Table 3). The 
combined criteria of significance in Table 3 
yielded lower values than for the percentage of 
significant LEPS skill scores. 

Table 3. Regional differences in forecasting skill: 
Percent stations with K-W  >= 0.9 and correlation 
>= 0.2. (Duration of predictor period is one 
month, lead-time is zero). 

Season 

State Jan-Mar Apr-Jun Jul-Sep Oct-Dec Avge 

Qld(N) 38 48 33 29 36.9 

Qld(S) 48 23 32 16 29.8 

NSW 38 71 95 82 71.3 

Vic 65 31 83 85 65.7 

Tas 63 50 75 75 65.6 

SA 42 8 92 83 56.3 

WA 37 5 84 63 47.4 

NT 47 53 67 7 43.3 

ACT 100 100 100 86 96.4 

Lead-time and comparison with SOI  

The effect of lead-time on several measures of 
mean annual forecast skill (calculated as the 
average of the four seasons) and a comparison of 
forecast skill between persistence and the SOI are 
shown in Table 4. 

Table 4.  Comparison of mean annual forecasting 
skill for persistence (one month predictor period) 
and average SOI (three month predictor period) at 
lead-times of zero to four months. 

  Lead-time (months)  

Attribute Tool 0 1 2 3 4 

% LEPS * Pers 67 46 34 23 20 

 SOI 41 34 26 27 22 

Mean LEPS Pers 9.8 5.8 3.9 1.8 1.1 

 SOI 5.3 4.3 2.8 2.8 1.9 

% K-W ^ Pers 82 59 47 n.a.** n.a. 

 SOI 55 47 37 n.a. n.a. 

Mean Corr # Pers 0.33 0.20 0.18 n.a. n.a. 

 SOI 0.22 0.18 0.15 n.a. n.a. 
*  % LEPS is %  stations with scaled LEPS >=7.6 
Mean LEPS is the mean of scaled LEPS values of 
locations 
^ % K-W is percentage of locations >= 0.90 
# Mean corr  is the mean correlation of locations 
** n.a. = not available 
 

We found the same pattern of significance in all 
seasons here as we did in Table 1, and therefore 

the means of the annual forecasting skill values 
are presented in this table. 

The method of cross validated LEPS skill scoring 
revealed lower percentages of stations with 
statistically significant forecast skill, than the 
non-parametric Kruskal-Wallis significance test 
and was thus a more stringent test. 

Table 4 results show that streamflow forecasts 
based on a one month predictor period have 
greater forecast skill than the average SOI across 
almost all measures of forecast skill and lead-
times. The exception is in early summer (October 
to December) when the SOI maintains skill out to 
a lead-time of three months. The mean LEPS skill 
score for all stations in October to December 
season with three months lead-time was 6.9 (51% 
of stations with statistically significant skill). The 
percentage of stations that were significant was 
lower for LEPS than for the K-W test. There is a 
building of skill from longer to shorter lead-times 
across all measures of skill testing. 

The median seasonal streamflows for the three 
categories of persistence and average SOI in 
Table 5 show the relative seasonality and strength 
of persistence and average SOI as forecast tools. 
This data shows that seasonal streamflow in 
Australia is bi-modal with the first peak (January 
to March) related to the wet-season rainfall of 
northern Australia, and the second peak (July to 
August) associated with the winter rains of 
southern Australia. 

 

Table 5. Median seasonal streamflow (units: 
ML/1,000) for both predictors (one month 
predictor period for persistence, three months for 
average SOI, zero lead-time). (Values are the 
mean of 320 stations). 

  Season 

Forecast 
tool 

Category Jan-
Mar 

Apr-
Jun 

Jul-
Sep 

Oct-
Dec 

Persist. High 132 33 62 46 

 Medium 85 20 42 25 

 Low 63 12 23 17 

Av SOI above +5 143 34 53 44 

 -5 to +5 78 17 41 26 

 below -5 53 18 29 19 

Mean All years 88 19 41 26 

 

Duration of forecast period 

The duration of the forecast season of streamflow 
provides significant skill at three months. A 
longer season exhibits a marked decrease in skill 



for most seasons. For example, the percentage 
stations with significant skill ranged from 75.8% 
for a three-month season beginning in June, to 
35.5% for a season length of 12 months. 

4. DISCUSSION 

Both persistence and the SOI show considerable 
capacity for seasonal forecasts and the results in 
this paper build upon the persistence analyses of 
Chiew et al. (2000) and the ENSO related 
streamflow analyses of Clewett et al. (2000). 
Median streamflow increased by 30 to 80 percent 
depending on the season when prior streamflow 
was in the upper tercile, or when the SOI in the 
previous season was above +5. In contrast, 
median streamflow decreased by 30 to 40 percent 
when prior streamflow was in the lower tercile, 
and by 5 to 40 percent when the average SOI was 
below –5. These are quite large changes in 
streamflow and thus valuable from an agricultural 
management viewpoint. However, in terms of 
targeting a seasonal forecast to service an 
agricultural decision it is also important to assess 
whether the forecast skill is sufficiently reliable 
and statistically significant, or whether there is 
just too much variation in the data for the 
forecasts to be useful. 

Table 1 showed that a one month persistence 
period is sufficient to provide a skilful forecast of 
subsequent streamflow (with lead-time zero). 
Lengthening the prior period of persistence does 
not improve the outcome, but there is negligible 
penalty up to three months. This relationship is 
also consistent across the seasons.  

The considerable differences in the skill of 
streamflow forecasts found between regions of 
Australia may be explained by the time series data 
being distinctly different between states. Some 
have extended time series which provides a 
potential for greater statistical skill. The Northern  
Territory, South Australia, Queensland, Tasmania 
and Western Australia have shorter time series. 
New South Wales including ACT, yielded the 
largest percentages of significant skill. This data 
set contains streamflow records from large 
catchments and rivers. Such rivers would exhibit 
a strong persistence of flow not directly tied to 
short-term rainfall throughout the year. This too is 
the case with northern Queensland which has 
large coastal rivers. A persistence relationship 
exists for the drier period of the year, but this 
relationship deteriorates as the storm season 
begins in Queensland in late spring / early 
summer. A lag appears in the system for northern 
states and territories between large incident 
rainfall and subsequent river flow. This is 
represented by the strong peak in the seasonal 
flow for January to March (Table 5). The strong 

persistence in winter and spring in southern states, 
can be linked to the seasonal rainfall ‘break’. The 
persistence of flow for the southern states and 
locations in the south-west of Western Australia, 
follows the break in April and May which is the 
time of peak discharge (Table 5). The usefulness 
of persistence as a forecasting tool is not 
restricted to southern states for late winter 
streamflows, with northern states providing 
significant skill in summer and autumn months 
and providing skill in southern states in spring 
and summer. 

Targeted seasonal forecasts can be used most 
effectively in agricultural management when the 
forecast system has skill at long lead-times.  
Forecast skill of both persistence and the SOI was 
found to increase as lead-time was reduced. The 
mean percentage of locations with significant 
LEPS skill scores (Table 4) as well as the mean 
value of the LEPS score demonstrates the rapid 
increase in forecast skill across the seasons  as 
lead-time approaches zero months. 

Although lead-time zero has highest skill, there is 
a benefit for decision making in using a longer 
lead-time. Our results show that although forecast 
skill is less at a lead-time of one month than lead-
time zero, skill is still reasonably high and is 
therefore useful.  

A lead-time of one month has important 
implications when targeting a forecast to the 
needs of water planning and tactical cropping 
decisions. In southern states at the end of winter, 
a one-month lead-time would provide an 
amelioration of risk for irrigation scheduling 
during the drier spring and summer seasons. An 
assessment of conditions by a manager one month 
prior to a tactical decision for crop planting or 
irrigation scheduling can provide an effective 
forecast. Longer lead-times have an advantage 
and potentially a combination of persistence and 
SOI could be used as a predictor. This combined 
predictor would be useful in the early summer 
season when average SOI has a higher level of 
forecast skill. Increased skill at longer lead-times 
would provide more opportunity for strategic 
planning to achieve environmental, economic and 
social outcomes and reduce the associated risk 
from a more reactive approach. 

An appropriate streamflow season duration is 
linked to its usefulness for a specific targeted 
planning decision. A longer period may be 
required for strategic planning of water resources, 
whereas a shorter one is useful for tactical 
planning, for example a farming situation. This 
study found that forecast skill is available for 
longer season duration, though the skill does 
decrease dramatically for a 12-month period. 



Three months duration provides the largest 
statistical significance and skill measures. 

A comparison between SOI and persistence of 
flow as predictors of subsequent flow reveals that 
persistence is stronger across seasons, lead-times 
and regions, except for long lead-times of three 
and four months in early summer. This was a 
consistent result for the three measures of forecast 
skill that were assessed: correlation, K-W test and 
LEPS skill score. Forecast methods combining 
persistence and the SOI warrant further 
investigation. 

5. CONCLUSIONS 

Persistence of streamflow is a useful and skilful 
forecast tool for most parts of Australia with one 
month of prior persistence flow the superior 
predictor of subsequent flow. 

A forecast lead-time of zero months is best 
though a lead-time of one month is statistically 
significant at most sites and provides an 
opportunity for a strategic response to the 
forecast. 

Persistence is a stronger predictor of streamflow 
than average SOI for all skill measurements 
(LEPS skill score, K-W test and mean 
correlation). 
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