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Abstract: A drawback of medium-to-long-term probabilistic forecasting methods is the relatively high uncertainty 
associated with model outputs, particularly when the models are used for prediction of future scenarios. This paper 
presents an extension to the probabilistic forecasting approach first presented in Sharma (2000b), that attempts to 
enhance the reliability of the model using an ensemble averaging approach. Each ensemble member or model is 
formulated using nonparametric statistical techniques and is restricted to have a relatively independent basis so as to 
represent the multiple mechanisms that influence the system being studied. The aim of using ensemble or model 
averaging is to reduce the chance of model misspecification, a common occurrence when the dependence is highly 
random and the system too complex to be explained by a limited number of predictors.  

The usefulness of the procedure is demonstrated through an application to forecast the Southern Oscillation Index 
(SOI), the multiple models being formulated using predictors selected from prior lags of the SOI and globally 
distributed, gridded sea surface temperature anomaly data. The model is assessed by evaluating its performance both 
in cross-validation as well as by forecasting an entire period of the record that was left out in the model formulation 
process. The results indicate that the consideration of uncertainty in climatological observations and the use of an 
ensemble of model outputs results in probabilistic forecasts that are more reliable and accurate than is the case 
otherwise. The implications of using the probabilistic forecasts for water resources management are discussed. 
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Medium to long-term prediction methods are either 
dynamical, or statistically based, or a combination of 
the two. Dynamical methods attempt to simulate the 
physics governing the global ocean-atmosphere 
system in order to predict the state of the climate at 
the location of interest. In contrast to dynamical 
approaches, statistical approaches are empirical, 
using the observed historical record with carefully 
identified predictors to predict future values. Hence, 
as long as the right system of predictors have been 
used in defining the variability of the hydro-climatic 
variable, an assumption that the past is indicative of 
the future holds true. As a result, instead of using the 
physics, statistical models use data that are generally 
of the same kind that would be used as input for 
dynamical models, but extend far back in time. For 
statistical models to give reasonable answers, two 
main conditions must hold true: (i) the data must be 
long enough to represent the range of possibilities 
nature is likely to toss in the future, and (ii) the 
predictors used in the formulation of the approach 
must be legitimate, chosen based on a mix of our 
understanding of the physics that results in climate 

1. INTRODUCTION 

Increasing water use and limited sources of supply 
are making water an increasingly precious resource 
for the world to share. Consequently, various 
alternatives for managing water are being evaluated 
and considered for use. This paper discusses one such 
option, namely, increasing supply reliability using 
probabilistic streamflow forecasts where knowledge 
of the climatic factors that drive flows is used to 
reduce forecast uncertainty. This paper presents a 
new approach for probabilistic forecasting. This 
approach is statistical in nature, and uses a system of 
carefully identified climatic predictor variables in 
formulating the forecasts. We use the quarterly 
Southern Oscillation Index time series to evaluate the 
utility of the probabilistic forecasting approach, using 
both a leave-one-out cross-validation formulation and 
a stand alone period that represents a pure forecast 
whose data is not used in formulating the 
probabilistic forecasting model. 

 



variability, as well as the empirical evidence that 
points towards their relevance. 

An example of a probabilistic forecasting model used 
for reservoir inflows in select catchments in Australia 
is the Nonparametric Probabilistic Forecast Model 
(Sharma, 2000b). A statistical measure of 
dependence, the PMI or the Partial Mutual 
Information criterion (Sharma, 2000a) is used to 
select a subset of potential predictors. A limitation of 
such an approach can be its reliance on a handful of 
predictors, particularly when they are selected from a 
potentially large set. In such a case, the large number 
of available choices can lead to predictors that are 
simply a result of chance. Another problem with such 
an approach is an implicit assumption that a single 
model (or equivalently a single set of selected 
predictors) can attempt to explain the type of 
variability that is observed. This would be equivalent 
to assuming that variability in Australian rainfall 
(say) is a result of the fluctuations in the mid-Pacific 
sea surface temperatures alone, often used as an 
indicator of the strength of the El Nino Southern 
Oscillation (ENSO).  

Model averaging (Hoeting et al., 2000) is one way to 
get around the difficulties noted above. This involves 
formulating multiple models of the system under 
study, each model having a basis that is relatively 
independent of that being used in the other models 
considered. For instance, one model for predicting 
Australian rainfall could have a basis in the mid-
Pacific region often associated with the ENSO, while 
another could have a basis in the Indian Ocean that 
has a prominent impact on rainfall in western and 
southern Australia. The nonparametric probabilistic 
forecasting approach presented in later sections 
makes use of the model averaging rationale outlined 
above. An application to the prediction of the 
quarterly Southern Oscillation Index time series is 
used to illustrate the usefulness of the approach. 

2. PREDICTOR SELECTION USING 
PARTIAL MUTUAL INFORMATION 

The partial mutual information (PMI) (Sharma, 
2000a) between the dependent variable y and the 
independent variable x, for a set of pre-existing 
predictors z, can be estimated as: 
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Figure 1 – Synthetically generated sine-wave sample lagged by half phase length. The coefficient of correlation for 

this sample equals –0.008 whereas the corresponding PIC value is 0.97. 
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1. Predictor identification: The PMI criterion is 
used to select a suitable number of predictors, 
these predictors being selected from a range of 
climatic indices as described in the next section. 
The number of predictors depends on their 
predictive performance measured in a leave-one-
out cross-validation setting. 

where 

x'i and y'i are the i’th residuals in the sample 
data set of size n, the residuals being 
estimated conditional to the pre-identified 
predictor vector z, and, 

2. Forecasting approach: The predictors identified 
in the earlier step are used to formulate a 
conditional prediction model using 
nonparametric kernel density estimation methods 
as has been described in Sharma (2000b). The 
output from this model is a conditional 
probability density function estimated based on 
specified predictor values.  

fX'(x'i), fY'(y'i), and fX',Y'(x'i,y'i) are the 
respective marginal and joint probability 
densities, estimated using nonparametric 
kernel density estimation methods as 
described in Sharma (2000b). 

If z represents an empty set, the PMI collapses to the 
Mutual Information criterion (Fraser & Swiney, 
1986). 

The PMI can be expressed on a [0,1] scale using the 
following expression: 

 ( )PMIPIC ×−−= 2exp1  (2) 

3. Formulation of multiple models – Steps 1 and 2 
are repeated a sufficient number of times to 
formulate multiple conditional prediction 
models. The rational behind formulating multiple 
models is to represent the multiple mechanisms 
that may be introducing variability in the 
variable being predicted. To ensure that different 
mechanisms are represented in each constituent 
model, the cross-dependence between leading 
predictors for each model as measured by the 
PMI criterion, is kept below a specified 
threshold. As a result, the leading predictors, and 
consequently their successors form relatively 
independent bases, ensuring that each individual 
model has a basis that is relatively independent 
of the other constituents. 

where PIC refers to the Partial Information 
Correlation, which collapses to the absolute value of 
partial correlation if all variables involved follow a 
Gaussian distribution. The usefulness of the above 
measures is more apparent when the variables are not 
Gaussian. Consider the relationship between x and y 
in Figure 1. The two variables are highly dependent, 
but still record a sample coefficient of correlation 
equal to -0.008. On the other hand, the PIC for the 
same two variables is equal to 0.97, representing 
more appropriately the nonlinear nature of 
dependence that exists between the variables. 

4. Estimation of model weights – Once the multiple 
model constituents have been formulated, the 
next step is to ascertain the weights that result in 
the best predictive linear weighted averaged 
model output. These weights are ascertained 
based on a constrained optimisation approach, 
the objective being to maximise the predictive 
performance of the averaged model in a leave-
one-out cross-validation setting. As the weights 
are constrained to sum to unity, the resulting 
averaged model output is also a legitimate 
conditional probability density function. 

An issue that arises when dealing with climate data is 
representation of unequally uncertain periods in the 
data. This is more apparent when using sea surface 
temperature information that was sparsely recorded 
in the early twentieth century and is measured more 
accurately using satellite imagery in current times. 
The PMI was modified to account for such variations 
in uncertainty, the rationale being to use the standard 
error associated with each observation as the basis for 
ascertaining its contribution in calculating the sample 
estimate. Further details on this modification will be 
presented at a later date. 

It should be noted that one of the reasons behind the 
use of model averaging in the probabilistic 
forecasting model described above, is to reduce the 
uncertainty introduced by selecting predictors from a 
possibly large set of variables. Another reason is to 
incorporate multiple processes that lead to variability 
in the predicted variable, as compared to formulating 
an approach that attempts to represent a single 
although dominant mode of variability. We illustrate 
the probabilistic forecasting methodology through an 

3. A NONPARAMETRIC PROBABILISTIC 
FORECASTING APPROACH 

The nonparametric probabilistic forecasting model is 
formulated as follows: 

 



Table 1 – Predictive performance of the probabilistic 
forecasting model. “mam” refers to March-April-May, 
“jja” to June-July-August, “son” to September-October-
November, and “djf” to December-January-February. 

application to forecast the quarterly Southern 
Oscillation Index next. 

4. CASE STUDY – SOUTHERN 
OSCILLATION INDEX  

Cross-
Validation

1866-
1992

Pure-
forecast 
1993-
2002

Cross-
Validation

1866-
1992

Pure-
forecast 
1993-
2002

mam 1 0.71 0.67 1.72 1.51
mam 2 0.69 0.48 1.65 1.24
mam 3 0.59 0.58 1.33 1.51
mam 4 0.47 0.35 1.09 1.36

jja 1 0.62 0.63 1.66 1.52
jja 2 0.62 0.33 1.42 1.10
jja 3 0.57 0.75 1.21 1.08
jja 4 0.43 0.16 1.20 1.13

son 1 0.81 0.92 2.04 2.12
son 2 0.64 0.69 1.32 1.77
son 3 0.44 0.57 1.25 1.28
son 4 0.38 0.47 1.13 0.76
djf 1 0.83 0.94 2.29 3.13
djf 2 0.76 0.71 1.82 1.54
djf 3 0.68 0.76 1.43 1.54
djf 4 0.68 0.38 1.47 1.20

Q L

Correlation Likelihood Ratio

 

A quarterly time series of the Southern Oscillation 
Index was used to illustrate the usefulness of the 
probabilistic forecasting approach outlined in the 
previous section. The Southern Oscillation Index data 
used here represents the period 1866 to 2002. The 
1866 to 1992 data was used for developing the model 
and for ascertaining model performance in a leave-
one-out cross-validation setting, while the 1993-2002 
period was used to evaluate the performance of the 
model in a pure-forecast setting. Separate models 
were formulated for each quarter and for lead times 
ranging from one quarter (3 months) to four quarters 
(one year). 

The PMI criterion was used to select predictors for 
the various models from selected climate indices and 
sea surface temperature anomaly (SSTA) data. The 
climate indices considered included the Southern 
Oscillation Index and the NINO3, while the SSTA 
data was reconstructed from shipping and remote 
measurements as described in Kaplan (1997). This 
data is available over a 5dx5d latitude-longitude grid 
covering much of the earth’s ocean surface. 
Predictors were selected from lagged variable values, 
the maximum lag being considered extending to 24 
quarters (six years). Given the large number of 
variables the predictors were identified from, the 
potential for selecting incorrect or spurious predictors 
was significant. The use of model averaging in such a 
setting was considered as an efficient means of 
reducing the predictive uncertainty that such spurious 
predictor choices could introduce.  

 

5. RESULTS 

As mentioned in the previous section, the 
performance of the probabilistic forecasting approach 
was evaluated in a leave-one-out-cross-validation 
setting for the 1866-1992 period, and in a pure-
forecast setting for the 1993-2002 period. A summary 
of the results obtained for all quarters and lead times 
is presented in Table 1. Two measures of 
performance are used. These are: (a) correlation 
between observed and the predicted expected value, 
and (b) likelihood ratio which represents the average 
ratio of the conditional (predicted) probability density 
at the observation being predicted, and the marginal 
(or unconditional) probability density at the same 
observation. While the first statistic represents the 
accuracy with which an expected or single valued 
forecast can be issued, the second represents 
increased probability with which each observation 

 



can be predicted in a leave-one-out cross-validation 
setting. 

Some observations from the results in Table 1 are: 

1. The results for the leave-one-our cross-validation 
(representing the period 1866-1992) are 
statistically indistinguishable from those for the 
pure-forecasts (representing the period 1993-
2002). One could thus expect leave-one-out 
cross-validation to represent the type of results 
that would be obtained in future applications of 
the model. 

2. The results are especially accurate for the 
September-October-November and the 
December-January-February quarter when the El 
Nino state is full developed in the oceans. This 
result is in accordance with the results obtained 
using most statistical and dynamical models for 
predicting the ENSO. 

3. While the results for the March-April-May and 
the June-July-August quarters are not as accurate 
as that for the later quarters, they represent a 
high accuracy on part of the model. This is 
especially important given that most dynamical 
and other approaches have difficulty predicting 
the actual onset of El Nino, which starts 
developing during the March-April period. It is 
also interesting to note that the model is able to 
sustain a relatively high accuracy even at a lead 
of one year. 

4. It is reassuring to note that probabilistic 
forecasting model performs well both in terms of 
the prediction of the expected value (represented 
by the correlation results in Table 1) as well as 
the conditional distribution (represented by the 
likelihood ratio results). Likelihood ratios 
consistently greater that one suggest an improved 
representation of the conditional probability 
distribution over climatology and hence a high 

potential for use of model outputs in risk-based 
water management applications. 

Space limitations prevent us from presenting the full 
range of predictor choices used in formulating the 
models summarised in Table 1. However, predictors 
for all constituent models for the September-October-
November quarter for a lead of 3 months are 
presented in Table 2. The weights and predictors 
associated with each constituent model are listed. It is 
interesting to note that the dominant mode being 
represented is the Markovian dependence associated 
with the state of the ENSO system (represented by 
the SOI and the SSTA for the 2-7° latitude and 218° 
longitude range). However, additional SSTA 
locations, corresponding to the eastern and western 
edges of Australia (-27/178, lag 1 and -42/133, lag 8) 
are also dominant choices in the predictors identified. 
Were a single set of predictors used in formulating 
the probabilistic forecasting model, it is likely that 
the variability characterised through these additional 
predictor choices would not have been adequately 
represented. 

In order to ascertain the improvement in the model as 
a result of the model averaging, a stepwise addition 
of the model constituents was performed for the 
September-October-November quarter, lead-1 
probabilistic forecasting model. Results from this 
assessment are presented in Table 3. It is interesting 
to note that there is an increase in the forecast 
performance for the 1866-1992 period, as well as the 
pure forecast period 1993-2002. While the 
improvements are not highly significant in the results 
presented, similar improvements were noted for most 
of the other quarters and lead times. What is 
reassuring about this and the other results is that these 
improvements are present in the pure forecast period, 
indicating that the process of averaging model 
outputs reduces the uncertainty that would be present 
if a single model were used instead. 

 

 

 

 

 

 

 

 

 

 

 



Table 2 – Constituent models and their respective weights for the September-October-November quarter, lead-1 
model averaged probabilistic forecasts 

 

Lat/Long Lag Lat/Long Lag Lat/Long Lag Lat/Long Lag
1 0.25 SOI 1 7/228 1 -42/133 8
2 0.18 7/218 1
3 0.26 -27/178 1 SOI 1 -42/133 8 42/298 28
4 0.13 17/253 1 SOI 1 2/218 1
5 0.17 32/178 1 SOI 1 7/218 1

Predictor 3 Predictor 4
Model Weight

Predictor 1 Predictor 2

 
 

Table 3 – Improvements in probabilistic forecasting 
as a result of model averaging 

1866-1992 1993-2002
1 0.76 0.81
2 0.77 0.85
3 0.80 0.91
4 0.81 0.91
5 0.81 0.92

Correlation # of 
PredSets

 

 

6. DISCUSSION 

Existing approaches for probabilistic forecasting 
suffer from several serious limitations. While many 
of the limitations relate to the simplistic distributional 
and dependence assumptions implicit in their 
formulation, a more serious limitation is increased 
predictive uncertainty which is a result of the limited 
ability of such models at representing the secondary 
modes of variability in the system. A new 
probabilistic forecasting approach was presented in 
this paper that addressed some of the limitations 
noted above. This approach was novel in two main 
respects: (a) it was cognisant of the varying levels of 
uncertainty present in the climatic data being used in 
the modelling, and (b) it attempted to capture both 
the dominant as well as the less dominant modes of 
variability in the system through use of multiple 
models whose outputs were averaged using a 
carefully formulated linear weighting scheme. 

While the above application presents results for the 
forecast of the Southern Oscillation Index, the use of 
the method for more general water resources 
applications is straightforward. Two areas where such 
an approach could be used in water management is 
water allocation (where sequences of the year-ahead 
flows are forecast and used to augment the current 

storage levels using appropriately formulated water 
demand forecasts), and reservoir operation (where the 
operation is optimised using pre-specified risk-based 
operational objectives, the system performance being 
simulated using the probabilistic forecasts as 
representative sequences that can be expected as 
inflows into the system). Details on these 
applications will be presented in a separate paper. 

REFERENCES 

Fraser, A.M. and Swinney, H.L., Independent 
coordinates for strange attractors from 
mutual information. Phys. Rev. A, 33(2): 
1134-1140, 1986. 

Hoeting, JA., Madigan D. Raftery AE. Volinsky CT., 
Bayesian model averaging: A tutorial, 
Statistical Science, Volume 15, Issue 3, 
Pages 193-195, 2000. 

Kaplan, A., Kushnir, Y., Cane, M.A. and Blumenthal, 
M.B., Reduced Space Optimal Analysis 
For Historical Data Sets - 136 Years of 
Atlantic Sea Surface Temperatures. Journal 
of Geophysical Research Oceans, 
102(C13): 27835-27860, 1997. 

Sharma, A., Seasonal to interannual rainfall 
probabilistic forecasts for improved water 
supply management: Part 1 - A strategy for 
system predictor identification, Journal of 
Hydrology, Volume 239, Issues 1-4, Pages 
232-239, 2000a. 

Sharma, A., Seasonal to interannual rainfall 
probabilistic forecasts for improved water 
supply management: Part 3 - A 
nonparametric probabilistic forecast model, 
Journal of Hydrology, Volume 239, Issues 
1-4, Pages 249-258, 2000b. 

 

 


	INTRODUCTION
	PREDICTOR SELECTION USING PARTIAL MUTUAL INFORMATION
	A NONPARAMETRIC PROBABILISTIC FORECASTING APPROACH
	CASE STUDY – SOUTHERN OSCILLATION INDEX
	RESULTS
	DISCUSSION
	REFERENCES

