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Abstract: Models for generating daily rainfall are in great demand for various needs and have seen much 
development. Srikanthan and McMahon (1985) showed that the transition probability matrix (TPM) model 
performed better than alternative models available then. However a noted shortcoming is the underestimation 
of the variances of the simulated monthly and annual rainfall. Boughton (1999) proposed an empirical 
adjustment to match the observed annual standard deviation, which although improves the variability in the 
annual rainfall, still underestimates the variability in the annual number of wet days. Recently, Harrold et al. 
(2002) proposed nonparametric models for the generation of daily rainfall occurrences and rainfall amounts 
on wet days. The rainfall occurrence model was conditioned on a combination of daily, seasonal, annual, and 
multi-year predictors. By conditioning on short, medium and long-term characteristics, this model was able 
to preserve the variability in the annual number of wet days. The model to generate the rainfall depth also 
used a combination of short and long term predictors which consisted of the rainfall depth on the previous 
day and an indicator of the annual rainfall total. This model also differed from the TPM model in the 
representation of seasonality in the rainfall simulations by a seasonal moving window. The above two 
approaches were compared by generating daily rainfall data for Melbourne and Sydney. Both approaches 
preserved most of the daily, monthly and annual characteristics but failed to preserve the correlations in 
monthly and annual rainfall. However, the nonparametric approach was able to preserve the variability and 
persistence in the annual number of wet days. 
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1. INTRODUCTION 

Daily rainfall is a major input to the design of 
water resources and agricultural systems. As 
historical data provides only one realisation of the 
underlying climate, stochastically generated data 
is used to assess the impact of climate variability 
on water resources and agricultural systems. The 
transition probability matrix (TPM) model 
(Srikanthan and McMahon, 1985) is widely used 
in Australia for stochastic generation of daily 
rainfall, and it appears to preserve most of the 
characteristics of daily, monthly and annual 
rainfall. While it performs better than many 
alternative models, it consistently underrepresents 
the variances of the observed monthly and annual 
rainfall. Boughton (1999) proposed an empirical 
adjustment to match the observed annual standard 
deviation. The adjustment factor can be explicitly 
derived as the ratio of the standard deviations of 
the generated and observed annual data. This 
adjustment improves the variability in the annual 

rainfall by scaling the rainfall amounts on wet 
days. Recently, an alternative approach involving 
nonparametric models for the generation of both 
daily rainfall occurrences and rainfall amounts on 
wet days was proposed by Harrold et al. (2002).  
This paper applies both the TPM approach and 
the approach of Harrold et al. (2002) to 
stochastically generate daily rainfall data for 
Melbourne and Sydney, and a number of daily, 
monthly and annual characteristics are used to 
compare the results of each approach.   

2. TRANSITION PROBABILITY MATRIX 
METHOD 

The model used in this study is a variation of the 
algorithm developed by Srikanthan and 
McMahon (1985). The rainfall amount of the last 
state is modelled by a shifted Gamma distribution 
instead of the Box-Cox transformation used in the 
original model. An empirical adjustment factor 
(Boughton, 1999) is incorporated to preserve the 
standard deviation of the annual rainfall. 
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3. NONPARAMETRIC MODEL In the Transition Probability Matrix (TPM) 
model, the seasonality in occurrence and 
magnitude of daily rainfall are taken into account 
by considering each month separately. The daily 
rainfall is divided into a number of states, up to a 
maximum of seven. State 1 is dry (no rainfall) and 
the other states are wet. The number of states for 
each month can be determined from the guidance 
given in Srikanthan and McMahon (1985).  

The nonparametric model (Harrold et al. 2002) 
consists of two parts: a rainfall occurrence model 
and a rainfall amounts model. The rainfall 
occurrence model is designed to smoothly 
reproduce the seasonality of the historical record 
and to reproduce the observed characteristics of 
the historical record at several time scales. 
Seasonality is modelled using the moving window 
approach (Rajagopalan et al. 1996; Sharma and 
Lall, 1999). A 15-day moving window is centred 
at the current calendar day, and all days falling 
within the moving window form the local subset 
of data used in the model for the current day. This 
ensures a smooth transition of generated rainfall 
characteristics throughout the year. Actual 
simulation proceeds using nearest-neighbour 
resampling (Lall et al., 1996; Sharma and Lall, 
1999). This is a data resampling strategy that 
approximates the random mechanism that 
produced the historical data. In this methodology, 
a pattern is chosen from the historical sequence 
that is similar to the current pattern in the 
generated sequence, and the successor to the 
chosen pattern is placed into the generated 
sequence. The patterns that are examined are 
those that exist in the predictor set used in the 
model. The predictor set used for Sydney and 
Melbourne rainfall occurrence is: 

The shifted Gamma distribution is used to model 
rainfall amounts for the last state, while a linear 
distribution is used for the intermediate states. 
The latter is chosen because daily rainfall usually 
exhibits a J shape distribution. 

The transition probabilities are estimated from 
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where fij(k) = historical frequency of transition 
from state i to state j within month k, and 

C = the maximum number of states. 

The Gamma distribution parameters are obtained 
by the method of moments. 

The model can be improved by adopting an 
empirical adjustment factor (F) to match the 
observed standard deviation of the annual rainfall 
(Boughton, 1999). The generated daily rainfall in 
each year is multiplied by the following ratio: 

1. Rainfall occurrence on the previous day 

2. The wetness state (very dry, dry, average, 
wet or very wet) for the previous 90 days. 

 
3. The wetness state for the previous year 

leading up to the current day. 
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4. The wetness state for the previous four or 
five years leading up to the current day. where  M is the generated mean annual rainfall 

and  Ti   the generated annual rainfall for year i. These predictors are chosen to represent both 
short-term and long-term dependence in the 
simulated rainfall. Since the slope of the frequency curve is 

proportional to the standard deviation, the 
adjustment factor can be directly obtained as a 
ratio of the standard deviation of the generated 
and observed annual rainfall. Thus: 

The model to generate the rainfall depth also used 
a short-term and a longer-term predictor. In 
addition, daily rainfall amounts are separated into 
four separate classes: class 0 solitary wet days, 
class 1a days at the start of wet spells, class 1b 
days at the end of wet spells and class 2 
intermediate days within wet spells. Another 
feature of the Harrold et al. (2002) model that 
differed from the TPM model was the 
representation of seasonality in the rainfall 
simulations. A 31-day moving window was used 
to ensure a smooth transition of generated rainfall 
characteristics throughout the year, whereas the 
use of a monthly discretisation in formulating the 
TPM resulted in an abrupt transition across month 
boundaries.  
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The standard deviation of the generated annual 
rainfall is estimated from a number of replicates 
and averaged. The ratio of this generated value to 
the observed value is taken as F for adjusting the 
daily values. It should be noted that while this 
adjustment improves the representation of rainfall 
characteristics at the annual scale, it comes at the 
cost of inflating the variability at the daily time 
scale. 



4. MODEL EVALUATION The model for the generation of rainfall amounts 
has two predictors, namely, the rainfall amount on 
the previous day and the wetness state for the 
preceding 365 days (very dry, dry, average, wet 
or very wet based on the number of wet days). 
The observations xi are separated into five data 
sets according to the historical values of the 
wetness state. The model is implemented using 
kernel estimation of the probability densities 
(Sharma et al., 1997; Sharma and O’Neill, 2002). 
Kernel density estimation methods form a 
smoothed empirical probability distribution from 
the historical record and generate values from this 
distribution. A univariate kernel probability 
density estimator is written as: 

The model evaluation is carried out at daily, 
monthly and annual time periods. The parameters 
used to evaluate at the daily level are: 

• number of wet days and maximum daily rainfall 
• mean, standard deviation and coefficient of 

skewness of daily rainfall 
• correlation between the rainfall depth (mm) and 

duration (days), for all wet spells in a month 
• mean rainfall on different types of wet days 
• mean, standard deviation and coefficient of 

skewness of dry and wet spell lengths 
• maximum dry and wet spell lengths 
• correlation between daily rainfall for Class 2 

wet days 
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At the monthly level, mean, standard deviation, 
coefficient of skewness, serial correlation, 
maximum and minimum monthly rainfall and 
number of months of no rainfall are compared. 
The maximum and minimum are standardised by 
the non-seasonal monthly mean. At the annual 
level, the first six of the above statistics, adjusted 
range and low rainfall sums of 2-, 3-, 5- and 10-
year durations are compared. In addition, the 
mean, standard deviation and the lag one 
autocorrelation coefficient of the annual number 
of wet days and the standard deviation of 2-, 3-, 
5- and 10- year rainfall sums are also compared. 
The maximum, minimum and the range are 
standardised by the mean annual rainfall. 

where xi is the ith data point in a sample of size n, 
K() is a kernel function that must integrate to 1 
and h is the bandwidth of the kernel used in 
estimating the probability density function. A 
Gaussian kernel is used and a bandwidth selected 
by the method of Silverman (1986). The 
bandwidth selected by this method is: 

h = 0.3Rn-1/5       (5) 

where R is the interquartile range of the data. 

Simulation Class 0 and Class 1a amounts (xt) 
proceeds as follows: 

1. Form a seasonal subsample (X) of n Class 0 
(or Class 1a) amounts from the historical 
record. 5. DISCUSSION OF RESULTS 

2. Pick an (xi) value with probability 1/n. 

3. Select xt as a random variate from the kernel 
centred on xi: 

xt = xi + hWi        (6) 

One hundred replicates, each of length 125 years 
were generated for Melbourne and Sydney. The 
number of states used in the TPM model for 
Melbourne and Sydney are 6 and 7 respectively 
for all the months. The daily, monthly and annual 
parameters mentioned in Section 4 were estimated 
from the replicates and averaged. The average 
values are used to evaluate the models. Due to 
lack of space, not all the results are presented.  

where Wi is a random variate from a normal 
distribution with mean 0 and unit variance. 

Equation (6) can generate zero or negative values 
for the rainfall amounts. To get around this 
problem, a variable kernel and boundary 
renormalisation (Sharma and O’Neill, 2002) are 
used near the threshold value of 0.3 mm. 
Simulation of Class 1b and Class 2 amounts 
proceeds in a similar way except that the xi values 
are selected conditionally and the bandwidth (h) 
is also calculated using conditional values of R 
and n. Further details on this methodology can be 
found in Harrold (2002).   

5.1. Daily Parameters 

Comparison of the historical and daily parameters 
is given in Tables 1 to 6. Only the results for one 
month from each season are presented. Both 
models preserved the number of wet days, 
maximum daily rainfall, correlation between 
rainfall depth and duration (Table 1), moments of 
daily rainfall (Table 2), mean rainfall on different 
types of wet days (Table 3), moments of the dry 
(Table 4) and wet spells (Table 5) and maximum 
dry  and  wet spells (Table 6) satisfactorily.  It can 

 



Table 1. Comparison of historical and generated number of wet days, maximum daily rainfall (mm) and 
correlation between rainfall depth and duration for all wet spells in a given month. 

 
 

 Number of wet days Maximum daily rainfall (mm) 
Correlation between rainfall 

depth and duration 
  Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oc
 His 12.2 13.0 11.4 11.8 191 165 198 162 0.68 0.65 0.72 0.67 
Sydney TPM 11.9 13.0 11.3 11.6 219 182 177 171 0.66 0.73 0.73 0.66 
 NP 11.9 13.0 11.1 11.7 204 200 196 166 0.65 0.67 0.71 0.65 
 His 8.2 12.1 16.6 14.4 108 80 74 61 0.65 0.64 0.62 0.
Melbourne TPM 8.0 11.8 16.1 14.1 85 77 68 67 0.65 0.68 0.70 0.73 
 NP 8.0 11.8 15.8 14.0 93 76 62 62 0.63 0.66 0.68 0.
 
Table 2. Comparison of historical and generated mean, standard deviation and coefficient of skewness of daily rainfall. 
 
Site  Mean (mm) Standard deviation (mm) Skewness 
  Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct
 His 8.5 9.3 8.6 6.7 16.4 17.0 16.1 13.2 5.24 4.00 4.26 5.27 
Sydney TPM 8.7 9.5 9.0 7.1 16.6 16.7 16.5 13.6 5.29 3.86 4.15 5.24 
 NP 8.8 9.6 8.7 6.9 17.6 17.6 15.9 13.4 5.60 4.31 4.37 5.24 
 His 5.9 4.9 2.9 4.7 9.6 7.7 4.7 6.6 3.49 3.80 5.29 3.19 
Melbourne TPM 6.1 5.1 3.1 5.0 9.7 7.8 4.8 6.7 3.25 3.68 5.01 3.22 
 NP 6.0 5.1 3.0 4.8 9.8 7.9 4.6 6.7 3.36 3.58 4.79 3.39 
 
Table 3. Comparison of historical and generated mean rainfall (mm) on different types of wet days. 
 
Site  Class 0 Class 1 Class 2 
  Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oc
 His 4.0 3.3 2.3 2.8 7.6 6.7 5.8 5.3 12.6 14.2 14.0 11.8 
Sydney TPM 4.5 3.8 2.8 3.3 7.7 7.0 6.4 5.8 13.0 14.3 14.4 12.2 
 NP 4.1 3.5 2.8 3.2 7.4 7.1 6.0 5.6 13.9 14.1 14.2 11.9 
 His 3.9 3.1 1.7 3.3 5.7 4.5 2.6 4.4 8.6 6.3 3.7 5.9 
Melbourne TPM 4.0 3.3 2.1 3.6 6.3 4.9 2.9 4.7 8.3 6.4 4.0 6.2 
 NP 4.0 3.2 2.0 3.5 5.9 4.7 2.8 4.5 9.1 6.5 3.6 5.7 
 
Table 4. Comparison of historical and generated mean, standard deviation and coefficient of skewness of dry spells. 
 
Site  Mean (days) Standard deviation (days) Skewness 
  Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oc
 His 3.7 3.5 4.6 3.5 3.2 3.3 4.8 3.0 2.01 2.37 2.91 2.03 
Sydney TPM 3.6 3.6 4.6 3.6 3.0 3.1 4.0 3.0 1.96 2.01 1.93 2.01 
 NP 3.7 3.7 4.7 3.6 3.3 3.5 4.8 3.3 2.16 2.35 2.44 2.40 
 His 5.5 3.5 2.3 2.9 5.0 3.1 1.7 2.4 1.93 2.99 1.83 2.53 
Melbourne TPM 5.4 3.5 2.4 2.9 4.9 2.9 1.8 2.4 1.94 1.90 2.07 2.17 
 NP 5.5 3.6 2.4 3.0 5.5 3.2 2.0 2.8 2.24 2.06 2.34 2.51 
 
Table 5. Comparison of historical and generated mean, standard deviation and coefficient of skewness of wet spells. 
 
Site  Mean (days) Standard deviation (days) Skewness 
  Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct 
 His 2.3 2.8 2.7 2.2 1.9 2.7 2.7 1.6 2.38 3.28 3.59 1.95
Sydney TPM 2.3 2.7 2.6 2.1 1.8 2.3 2.2 1.6 2.21 2.17 2.20 2.18
 NP 2.3 2.8 2.6 2.2 1.9 2.5 2.3 1.7 2.59 2.51 2.67 2.37
 His 1.9 2.4 2.6 2.4 1.2 1.9 2.1 1.8 1.71 2.33 2.08 2.01
Melbourne TPM 1.9 2.4 2.6 2.4 1.3 1.8 2.0 1.8 2.11 2.13 2.07 2.04
 NP 1.9 2.4 2.5 2.4 1.3 2.0 2.2 1.9 2.35 2.37 2.58 2.23
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also be seen from Table 6 that the nonparametric 
model preserved the correlation between daily 
rainfall  on   class  2  wet   days   while  the  TPM  

method did not preserve for all the months. This 
is the only difference in performance between the 
two approaches with regard to daily statistics. 



Table 6. Comparison of historical and generated maximum dry and wet spell lengths and correlation between daily 
rainfall for class 2 wet days. 

 
Site Model Max dry spell length (days) Max wet spell length (days) Correlation (class 2 wet days) 
  Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct 
 His 22 24 47 21 15 29 26 11 0.136 0.230 0.220 0.139
Sydney TPM 22 22 28 22 14 17 16 12 0.056 0.130 0.130 0.076
 NP 24 26 35 27 16 20 19 14 0.132 0.241 0.177 0.134
 His 31 35 12 23 9 18 15 16 0.212 0.311 0.293 0.197
Melbourne TPM 33 21 14 19 10 14 15 14 0.202 0.251 0.241 0.231
 NP 40 23 16 22 10 16 19 15 0.209 0.259 0.306 0.198
 
Table 7. Comparison of historical and generated monthly statistics. 
 

  Sydney Melbourne 

Parameter Model Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov 

 Hist 104 133 126 98 71 83 48 53 58 48 59 60 
Mean TPM 104 137 124 102 71 85 49 54 61 51 61 61 
(mm) NP 105 132 122 97 72 84 49 52 58 47 59 62 

 Hist 80 106 110 84 59 78 37 41 28 23 29 37 
Std Dev TPM 80 99 103 89 57 67 37 39 31 25 30 36 

(mm) NP 88 102 98 91 62 72 39 40 32 26 30 39 
 Hist 1.33 1.46 1.71 1.02 1.60 3.00 1.23 1.15 0.53 2.01 1.48 1.13 

Skew TPM 1.59 1.40 1.38 1.61 1.65 1.84 1.27 1.35 1.12 1.47 1.27 1.14 
 NP 1.74 1.45 1.35 1.78 1.92 2.10 1.39 1.42 1.07 1.28 1.12 1.35 
 Hist 0.12 0.13 0.10 0.04 0.09 0.08 -0.06 0.11 -0.02 0.05 0.08 0.20 

Correl. TPM 0.01 0.04 0.03 0.04 0.02 0.03 0.00 0.01 0.02 0.03 0.03 0.02 
 NP 0.05 0.07 0.02 0.12 0.02 0.06 -0.01 0.03 0.05 0.10 0.02 0.06 
 Hist 0.05 0.06 0.03 0.02 0.03 0.02 0.01 0.07 0.07 0.20 0.23 0.11 

Min TPM 0.06 0.07 0.03 0.02 0.05 0.06 0.02 0.04 0.17 0.22 0.21 0.11 
 NP 0.03 0.04 0.03 0.01 0.03 0.04 0.02 0.04 0.13 0.15 0.15 0.08 
 Hist 3.74 3.91 4.66 3.42 5.01 6.23 3.67 3.62 2.46 3.70 3.43 3.46 

Max TPM 4.22 3.90 4.34 4.67 4.44 4.51 3.95 3.87 2.91 3.11 2.90 3.18 
 NP 4.61 4.07 4.21 5.29 5.06 5.14 4.13 4.07 3.12 3.29 3.02 3.51 

No Hist 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
rainfall TPM 0.0 0.0 0.0 0.1 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.0 

(%) NP 0.0 0.0 0.1 0.2 0.2 0.1 0.3 0.0 0.0 0.0 0.0 0.0 
 
Table 8. Comparison of historical and generated annual parameters. 
 

Site Model Mean SD Skew Correl Min Max Range Low rainfall sums 
  (mm) (mm)      2yr 3yr 5yr 10yr 
 His 1220 325 0.62 0.13 0.48 1.80 5.57 1.27 2.04 3.67 7.98 
Sydney TPM 1244 329 0.69 0.01 0.45 1.86 5.01 1.20 2.01 3.77 8.39 
 NP 1214 321 0.54 0.03 0.47 1.84 5.43 1.21 2.00 3.66 8.06 
 His 660 128 0.02 0.01 0.50 1.47 2.27 1.31 2.17 4.10 8.89 
Melbourne TPM 683 127 0.86 0.04 0.61 1.58 5.27 1.44 2.35 4.19 9.07 
 NP 656 139 0.32 0.19 0.55 1.61 5.90 1.28 2.06 3.70 8.07 

 
  5.3 Annual Statistics 
5.2 Monthly Statistics Comparison of the historical and generated 

parameters of annual rainfall is given in Table 8. 
All the parameters of annual rainfall have been 
preserved satisfactorily, with two exceptions. The 
TPM method overestimates the mean annual 
rainfalls by 2-3%. This is consistent with the 
results of Zhou et al. (2002), who tested the TPM 
model at 21 locations. Zhou et al. (2002) also 
showed that the TPM approach does not 

Comparison of the historical and generated 
monthly parameters is given in Table 7. Both 
models preserved all the parameters except the 
correlation between monthly rainfalls. The NP 
approach seems to be able to produce correlations 
that are slightly closer to the historical values than 
the TPM approach. 



reproduce annual lag-one autocorrelations that are 
significantly different from zero. The lag one 
autocorrelation coefficients are not reproduced 
here by either TPM or NP. Again, the NP 
approach seems to be able to produce closer 
correlations than the TPM approach. The 
historical and generated standard deviation of 2-, 
3-, 5- and 10-year sums are given in Table 9. Both 
models appear to preserve these statistics 
satisfactorily. 

Table 9.  Comparison of the standard deviation of 
2-, 3-, 5- and 10-year rainfall sums. 

Site Model 2yr 3yr 5yr 10yr
 His 180 191 319 497
Melbourne TPM 181 222 289 418
 NP 209 273 394 629
 His 450 569 852 1368
Sydney TPM 460 567 740 1058
 NP 451 563 759 1119
 

The mean, standard deviation and the lag one 
autocorrelation coefficient of the annual number 
of wet days are given in Table 10. Only the mean 
number of annual wet days has been preserved by 
both the models. The TPM model failed to 
preserve the standard deviation and the lag one 
autocorrelation coefficient of the annual number 
of wet days while the NP model preserved both. 
This is to be expected as the NP model took 
account of the wetness state of the medium to 
long term period in determining the occurrence of 
rainfall, whereas the TPM model was entirely 
dependent on the state of the previous day. 

Table 10. Comparison of mean, standard 
deviation and lag one autocorrelation of the 
annual number of wet days. 

Site  Mean Std dev Correl 
 His 146.7 20.9 0.30 
Sydney TPM 143.6 13.5 -0.01 
 NP 143.1 22.6 0.33 
 His 152.8 17.2 0.31 
Melbourne TPM 149.9 11.9 0.00 
 NP 148.8 18.2 0.36 

6. CONCLUSIONS 

The transition probability matrix (TPM) model 
and the nonparametric approach to generate daily 
rainfall data were compared using data from 
Melbourne and Sydney. Both approaches 
preserved most of the daily, monthly and annual 
characteristics, but failed to preserve the 
correlations in monthly and annual rainfall. 
However, the nonparametric approach preserved 
the correlation between daily rainfall on Class 2 
wet days, and the variability and persistence in 

the annual number of wet days, while the TPM 
model failed to preserve them. 
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