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Abstract:  Models to generate stochastic monthly streamflow data can be applied to generate monthly 
rainfall data, but this presents problems for most regions, which have significant months of no rainfall. 
Srikanthan and McMahon (1985) recommended the method of fragments to disaggregate the annual rainfall 
data generated by a first order autoregressive model. The main drawbacks of this approach are the inability to 
preserve the monthly correlation between the first month of a year and the last month of the previous year 
and the occurrence of similar patterns from a short length of historic data. Maheepala and Perera (1996) 
proposed a modification to the selection of fragments that preserves the year-end monthly correlation to 
improve on the first drawback. Porter and Pink (1991) used synthetic fragments from a Thomas-Fiering 
monthly model to overcome the second drawback. For sites with considerable number of zero rainfall 
months, there will be problems with the application of the Thomas-Fiering monthly model to generate the 
synthetic fragments. Sharma and O’Neil (2002) developed a nonparametric approach to model the inter-
annual dependence in monthly streamflows. This method is applied to generate rainfall data from 10 rainfall 
stations located in various parts of Australia, and results compared to the modified method of fragments. 
Several annual and monthly statistics were calculated to evaluate the performance of the model and to 
compare with the modified method of fragments. It was found that both the models preserved the annual and 
monthly characteristics adequately although it was concluded that the nonparametric approach offered some 
advantages. 

Keywords: Stochastic generation; Monthly rainfall, Method of fragments; NPL1 

 

1. INTRODUCTION 

Monthly rainfall data are used in the simulation of 
water resources systems, and in the estimation of 
water yield from large catchments.  In order to 
assess the system response to climatic variability, 
long sequences of stochastically generated 
monthly data are used. Even though the stochastic 
models to generate monthly streamflow data can 
be applied to generate monthly rainfall data, this 
presents problems for most regions, where there 
are large number of months of no rainfall. In an 
earlier study, Srikanthan and McMahon (1985) 
recommended the method of fragments to 
disaggregate the annual rainfall data generated by 
a first order autoregressive model. Porter and Pink 
(1991) reported that the use of the method of 
fragments resulted in the conspicuous repetition 
of monthly patterns when generating data much 
longer than the historical data. They proposed to 
obtain the monthly fragments from a generated 
monthly flow sequence from a Thomas-Fiering 
monthly model. For sites with a considerable 
number of months of no rainfall, there will be 

problems to generate the synthetic fragments 
.using the Thomas-Fiering monthly model. 
Another problem with the method of fragments is 
that its inability to preserve the monthly 
correlation between the first month of a year and 
the last month of the previous year. Maheepala 
and Perera (1996) proposed a modification to the 
selection of fragments that preserves the year-end 
monthly correlation and applied this modification  
successfully to generate monthly streamflows 
using synthetic fragments.  

Recently, Sharma and O’Neil (2002) developed a 
nonparametric approach to model the short-term 
(month to month) as well as the intern-annual  
(month to year) dependence in the generated 
monthly streamflows. In this paper, this method 
(denoted NPL1, or nonarametric with long-term 
dependence order 1) is applied to generate rainfall 
data from 10 rainfall stations located in various 
parts of Australia. The results from this model are 
compared with those from a modified method of 
fragments (MFM). 
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  Table 1.  Details of the rainfall stations selected 

Number Name 
Latitude 
(degree) 

Longitude 
(degree) 

Length of 
Record (years) 

Annual 
Mean (mm) 

% of months with no 
rainfall 

006036 Meedo -25.66 114.62 95 216 0 - 68 
009034 Perth -31.95 115.84 116 868 0 - 11 
014902 Katherine Council -14.46 132.26 112 974 0 - 90 
015540 Alice Springs PO -23.71 133.87 113 280 12 - 45 
023000 Adelaide -34.93 138.58 140 530 0 - 5 
028004 Palmerville -16.00 144.08 110 1034 0 - 57 
040214 Brisbane -27.48 153.03 134 1154 0 - 4 
066062 Sydney -33.86 151.20 141 1226 0 - 1 
086071 Melbourne -37.81 144.97 140 657 0 - 1 
094061 Sandford  -42.93 147.52 112 578 0 - 1 
where  Xt rainfall for month t 2. RAINFALL DATA 
 Zt previous 12 months rainfall Ten rainfall stations were selected to cover the 

Australian continent. The locations of the selected 
rainfall stations are shown in Figure 1 while the 
details are shown in Table 1. The number of 
months of no rainfall, calculated separately for 
each of 12 calendar months, varies from 0 to 90 
%. The large percentage of no rainfall months 
renders the application of the Thomas-Fiering 
model very difficult. 

 (= Xt-1 + Xt-2 + … + Xt-12 ) 

fm marginal probability density of 
Xt-1 and Zt 

Using a Gaussian kernel function, the above 
conditional probability density is estimated as 
Sharma and O’Neill, 2002): 
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where λ is a smoothing parameter, known as the 
“bandwidth” of the known density estimate 

             S’ is a measure of spread of the 
conditional probability density, expressed as: 

























−=

zzzz

z
T

z S
S

SS
SS

S
S

SS
1

12

2

222

1

12
11   

  
'  

where the covariance matrix of the variable set 
(Xt, Xt-1, Zt) is written as 

Cov(Xt, Xt-1, Zt) =  
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11211Figure 1. Location of the rainfall stations 
selected. 

3. NONPARAMETRIC MODEL 
wi   is the weight associated with each kernel that 
constitutes the conditional probability density: The nonparametric NPL1 model is designed to 

preserve both the short term (month to month) as 
well as the inter-annual (month to year, year to 
year) dependences in simulated rainfall data. The 
model used in this study uses only the dependence 
on the previous month and the previous 12 
months rainfall total. The generation of monthly 
rainfall data proceeds from the following 
conditional probability density: 
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xt and zt represent the rainfall for month t and the 
sum of the prior 12 monthly rainfalls respectively. 

The conditional probability density estimate in 
Equation (2) can be viewed as consisting of n 
kernels having relative areas equal to weight wi, 
centred at bi, and having a spread proportional to 
S’. Each of these is a slice of the trivariate kernels 
that constitute the joint probability density of (Xt, 
Xt-1, Zt), along the conditioning plane specified by 
( Xt-1, Zt ). The weight wi depends directly on how 
far the kernel is from the conditioning plane. A 
small weight implies that the kernel is far from 
the conditioning plane and does not make up a 
significant proportion of the conditional density 
estimate. On the other hand, a large wi implies the 
kernel is close to the conditioning plane and 
constitutes a significant portion of the conditional 
density estimate. Consequently, data generation 
will proceed with more emphasis given to the 
observed data points lying closer to the 
conditioning plane and less emphasis given to the 
data points that lie farther away. Readers are 
referred to Sharma et al. (1997) and Sharma and 
O’Neal (2002) for details on the above 
multivariate kernel density estimator. 

Monthly rainfall data is generated by following 
the steps below: 

Step 1. Estimate the bandwidth and the 
covariances S11, S12, S1z, S22, S2z, Szz. 

Step2. Start the data generation by arbitrarily 
assigning values to Xt-1 and Zt. 

Step 3. Given Xt-1 and Zt, estimate the weight wi 
associated with each kernel. 

Step 4. Pick a data point with probability wi. 

Step 5. The new value of Xt can be obtained as 
Xt = bi + λ(S’)1/2Wi,  where Wi is a Gaussian 
random variable with zero mean and unit standard 
deviation. 

Step 6. Repeat steps 3 to 5 until the required 
length of data is generated. 

The first few generated values are discarded to 
reduce the effect of the arbitrary initialisation 
used. In this study, the first 16 years of generated 
data are discarded. 

To overcome the problem of generating negative 
rainfall, a variable kernel (Scott, 1992) has been 
used for data points close to the zero rainfall 
boundary. The bandwidth of the conditional 
kernel used for generating a new rainfall in step 5 
is reduced depending on the distance of its centre 

(bi) from the zero rainfall boundary. The modified 
step 5 is as follows: 

Step 5a.  Estimate a transformed band width λ’ 
such that 

 λ = λ  if  FN(bi,λ
2
S’) (Xt ≤ 0) ≤ α 

    = λ’  if  FN(bi,λ
2
S’) (Xt ≤ 0) > α  

where FN(bi,λ’
2

S’) (Xt ≤ 0) = α and FN(µ,σ
2

) is the 
cumulative probability of a Normal distribution 
with mean µ and variance σ2, with the bandwidth 
being transformed to λ’  if for the selected 
Normal kernel, the probability of the rainfall Xt 
being less than or equal to zero, is estimated to be 
greater than a specified threshold α. 

Step 5b.  Generate a new value of Xt using  Xt = bi 
+ λ’(S’)1/2Wi,  where Wi  is a Gaussian random 
variate with zero mean and unit variance. 

Step 5c.  Repeat step 5b if the generated value of 
Xt is less than zero, until a positive value results. 

4. MODIFIED METHOD OF FRAGMENTS 

The observed monthly rainfalls are standardised 
year by year so that the sum of the monthly 
rainfall in any year equals unity. This is carried 
out by dividing the monthly rainfall in a year by 
the corresponding annual rainfall. By doing so, 
from a record of n years, one will have n sets of 
fragments of monthly rainfalls. The appropriate 
monthly fragments for a given year, k, is selected 
by considering the closeness of the generated 
annual rainfall data and the monthly rainfall for 
the last month of the previous year of the already 
disaggregated data to the corresponding historical 
values (Maheepala and Perera, 1996). This is 
achieved by selecting the monthly fragments of a 
year, i, in the generated monthly series that 
produces a minimum value for αi, which is 
defined below: 
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where x′k = generated annual rainfall for year k 

 xi = historical annual rainfall for year i 

sx = standard deviation of the annual 
rainfall 

y′k-1 = disaggregated monthly rainfall for 
the last month of year k-1 

yi-1 = historical monthly rainfall for 
the last month of year i-1 

sy = standard deviation of the 
monthly rainfall for the last month 
of a year 



Both models reproduced the annual mean, 
standard deviation and coefficient of skewness for 
all the stations. The lag one autocorrelation was 
small for all the stations and both the models 
preserved it except for Meedo and Alice Springs. 
For Alice Springs, the nonparametric model gave 
a small average value while the method of 
fragments gave a satisfactory value. However, the 
observed correlation is within the 95% confidence 
limits. Table 3 shows that the extreme events are 
reproduced. The adjusted range and the low 
rainfall sums are also reproduced (Table 4). 

The generated annual rainfalls are disaggregated 
by multiplying the generated rainfall by each of 
the 12 fragments to give 12 generated monthly 
rainfalls. In this study, the generated annual 
rainfall is obtained from a first order 
autoregressive model with parameter uncertainty 
(Srikanthan et al., 2002a).  

5. MODEL EVALUATION 

The model evaluation is carried out at annual and 
monthly time periods. The parameters used to 
evaluate the annual level are the annual mean, 
standard deviation, coefficient of skewness, lag 
one autocorrelation coefficient, extreme events, 
adjusted range and low rainfall sums. The 
maximum and minimum rainfall depth occurring 
in the historic record and in each of the generated 
sequences are taken as the extreme events. Rank 
one 2-, 3-, 5-, 7- and 10-year low rainfall sums 
are used. The adjusted range (R) is obtained from 

6.2. Monthly Parameters 

The mean of each of the seven monthly 
parameters (Section 5) estimated from the 100 
replicates were compared with the corresponding 
historical values. The comparison for Meedo is 
given in Table 5. Both models reproduced the 
monthly mean, standard deviation, coefficient of 
skewness and correlation well. The modified 
method of fragments using historical fragments 
preserved the monthly correlation for the first 
month in the year. Both models preserved the 
extreme events and the relative frequency of no 
rainfall months. 

R = max {Dk} – min {Dk} k = 1, 2, … , n (4) 
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The extreme events, low rainfall sums and the 
adjusted range are standardised by dividing by the 
historical mean annual rainfall. The percentile values of the parameters from the 

generated data and the historical parameters were 
plotted for both the models (Srikanthan et al. 
2002b). For the first five parameters, the 
historical values are all within the 95 % 
confidence limits. The method of fragments 
produced more extreme rainfall totals than the 
historical minimum rainfalls for the low rainfall 
months. The nonparametric model performs better 
than the method of fragments with regard to 
minimum rainfall. (Figure 2). Both models 
satisfactorily reproduced the relative frequency of 
no rainfall months. 

At the monthly level, the monthly means, 
standard deviations, coefficients of skewness, 
serial correlation coefficients between successive 
months, maximum and minimum monthly rainfall 
and relative frequency of no rainfall months are 
used. The serial correlation coefficient 
corresponding to month t is the correlation 
between the t and (t-1) monthly pairs. The 
extreme events are divided by the historical 
overall monthly mean (i.e. annual mean divided 
by 12). 

6. DISCUSSION OF RESULTS 

The annual and monthly parameters mentioned in 
section 5 were estimated from each of the 100 
replicates for both the models. For each 
parameter, the mean, median, 2.5-, 25-, 75- and 
97.5- percentile values are obtained for 
comparison Due to lack of space, only part of the 
results are presented in this paper. For a full set of 
results, the reader is referred to Srikanthan et al. 
(2002b). 

6.1. Annual Parameters 

The average values of annual mean, standard 
deviation, coefficient of skewness and lag one 
autocorrelation coefficient from 100 replicates are 
presented in Table 2. 
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Figure 2. Comparison of historical and generated 

monthly minimum rainfall for 
Palmerville. 



       Table 2. Comparison of historical and generated annual mean, standard deviation, skewness and lag one 
autocorrelation coefficient. 

 
 Mean Standard deviation Skewness Lag 1 autocorrelation 
Station Hist MFM NPL1 Hist MFM NPL1 Hist MFM NPL1 Hist MFM NPL1 
Meedo 214 220 216 102 96 102 1.105 0.878 0.873 -0.032 0.258 0.059 
Perth 868 874 876 162 164 168 0.103 0.639 0.210 -0.051 -0.019 0.030 
Katherine 975 973 983 251 261 275 0.046 0.153 0.219 0.069 0.084 0.066 
Alice 282 285 279 145 146 144 1.498 1.401 1.182 0.289 0.230 0.068 
Adelaide 530 531 532 108 107 115 0.057 0.610 0.232 -0.010 0.076 0.045 
Palmerville 1035 1043 1041 302 327 321 0.661 0.681 0.474 0.070 0.062 0.057 
Brisbane 1154 1161 1162 358 384 356 0.592 0.953 0.659 0.016 0.054 0.106 
Sydney 1225 1223 1230 331 342 347 0.607 0.825 0.524 0.101 0.129 0.070 
Melbourne 659 657 660 127 125 132 0.001 0.571 0.257 0.012 0.104 -0.064 
Sandford 576 578 583 131 130 130 0.432 0.748 0.404 0.011 0.105 0.037 

 

       Table 3. Comparison of historical and generated annual maximum, minimum and adjusted range. 

 Maximum Minimum Range 
Station Hist MFM NPL1 Hist MFM NPL1 Hist MFM NPL1 
Meedo 2.619 2.513 2.560 0.305 0.263 0.220 5.817 6.233 5.740 
Perth 1.542 1.620 1.533 0.586 0.630 0.561 3.571 2.386 2.478 
Katherine 1.615 1.717 1.771 0.451 0.373 0.355 4.344 3.549 3.715 
Alice 3.207 3.131 2.838 0.191 0.257 0.170 8.205 7.723 6.754 
Adelaide 1.485 1.673 1.628 0.487 0.592 0.506 2.275 3.000 3.148 
Palmerville 2.027 2.031 1.923 0.433 0.401 0.369 3.595 3.998 3.855 
Brisbane 1.944 2.247 1.969 0.357 0.414 0.389 6.490 4.786 4.599 
Sydney 1.790 1.992 1.874 0.476 0.473 0.421 5.785 4.332 4.164 
Melbourne 1.468 1.632 1.545 0.504 0.599 0.544 2.239 2.840 2.628 
Sandford 1.603 1.759 1.657 0.566 0.576 0.537 2.846 3.061 2.986 

 
       Table 4. Comparison of historical and generated 2-, 5- and 10-year low rainfall sums. 

 2-year 5-year 10-year 
Station Hist MFM NPL1 Hist MFM NPL1 Hist MFM NPL1 
Meedo 0.772 0.751 0.739 2.797 2.813 2.817 7.515 7.061 7.061 
Perth 1.439 1.449 1.371 4.012 4.124 4.043 8.803 8.849 8.748 
Katherine 1.173 1.053 0.995 3.605 3.544 3.459 8.232 8.038 8.041 
Alice 0.716 0.705 0.628 2.446 2.584 2.742 6.320 6.535 6.868 
Adelaide 1.389 1.367 1.296 4.020 3.958 3.878 8.369 8.559 8.483 
Palmerville 1.259 1.075 1.033 3.389 3.500 3.438 7.590 7.987 7.914 
Brisbane 0.976 1.066 1.072 3.607 3.422 3.443 7.732 7.829 7.866 
Sydney 1.262 1.142 1.139 3.650 3.534 3.585 7.945 7.909 8.086 
Melbourne 1.313 1.376 1.320 4.107 3.962 4.008 8.899 8.603 8.688 
Sandford 1.323 1.323 1.361 3.912 3.893 3.947 8.730 8.470 8.591 

 

 



Table 5. Comparison of historical and generated monthly parameters for Meedo. 

Parameter Model Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
 Hist 15.6 20.3 18.8 13.6 34.8 42.1 34.0 18.5 5.1 5.8 3.2 3.6 
Mean MFM 19.8 20.6 21.6 12.0 32.7 44.2 34.6 18.7 5.4 4.4 3.1 2.6 
(mm) NPL1 16.4 21.8 18.4 12.1 34.8 42.2 33.0 18.9 5.2 6.2 3.1 3.8 
 Hist 32.4 29.6 27.8 23.1 36.6 31.2 35.0 19.1 6.3 13.1 8.8 10.2 
Std Dev MFM 38.7 26.6 31.0 16.8 36.3 30.2 32.8 17.5 7.4 10.0 6.6 6.7 
(mm) NPL1 33.0 30.5 27.8 18.1 37.5 32.2 34.9 19.1 6.5 12.5 7.9 10.1 
 Hist 4.01 2.36 2.31 3.53 1.62 0.96 2.10 1.41 1.72 3.70 4.79 5.51 
Skew MFM 3.28 1.77 1.96 2.38 1.63 0.66 1.98 1.31 1.97 4.11 3.70 4.00 
 NPL1 3.49 2.11 2.20 2.75 1.60 0.91 1.96 1.25 1.64 3.31 4.17 4.19 
 Hist -0.11 0.13 0.02 0.02 0.06 0.07 -0.03 -0.05 0.03 0.03 0.30 0.04 
Correl. MFM -0.12 0.17 -0.02 0.08 -0.04 0.09 0.08 -0.11 0.06 0.09 -0.02 -0.04 
 NPL1 -0.13 0.15 0.02 0.03 0.06 0.04 -0.03 -0.06 0.05 0.02 0.13 0.04 
 Hist 12.1 8.3 8.5 7.5 9.3 7.3 10.2 5.0 1.8 4.2 3.4 4.6 
Max MFM 11.6 7.0 8.1 5.2 9.2 7.1 9.3 4.5 1.9 3.4 2.2 2.4 
 NPL1 10.7 7.9 7.8 6.0 9.1 7.7 9.8 4.6 1.7 3.8 2.8 3.5 
 Hist 0 0 0 0 0 0.072 0 0 0 0 0 0 
Min MFM 0 0 0 0 0 0.09 0.001 0 0 0 0 0 
 NPL1 0 0 0 0 0 0.03 0 0 0 0 0 0 
No Hist 35.1 28.7 36.2 33.0 10.6 0 5.3 10.6 35.1 41.5 63.8 68.1 
rainfall MFM 35.8 28.6 35.5 32.9 13.2 0 5.5 7.1 37.7 40.6 58.8 69.0 
(%) NPL1 37.2 29.4 38.6 32.6 11.3 0.2 5.7 10.8 33.9 42.1 65.6 68.6 

 

Porter, J. W. and B. J., Pink, A method of 
synthetic fragments for disaggregation in 
stochastic data generation. Hydrology and 
Water Resources Symposium, Institution 
of Engineers, Australia, 187-191 1991. 

 

7. CONCLUSIONS 

The method of fragments and the nonparametric 
model, developed by Sharma and O’Neill (2001), 
were evaluated using monthly rainfall data from 
10 rainfall stations located in different parts of 
Australia. The evaluation was carried out at the 
annual and monthly level. Both models were 
found to preserve the annual and monthly 
characteristics adequately. However, the 
nonparametric model has the following 
advantages over the method of fragments. 
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Streamflow simulation: A nonparametric 
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Sharma, A. and R.O’Neill, A nonparametric 
approach for representing interannual 
dependence in monthly streamflow. Water 
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• It does not repeat the same yearly patterns as 
in the method of fragments. 

• Minimum rainfalls were generated better than 
method of fragments.  

Srikanthan, R. and McMahon, T.A., 1985. 
Stochastic generation of rainfall and 
evaporation data. AWRC Technical Paper 
No. 84, 301pp. 

• It eliminates the need for having a separate 
model that simulates the annual rainfall 
values. 

• It also eliminates the need for choosing a 
starting month for forming annual totals as it 
uses only the monthly data. 
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G.Kuczera,. Stochastic generation of 
annual rainfall data. Technical Report 
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