
Generation of synthetic daily rainfall for thirteen 
locations in Australia using a nonparametric approach  

T.I. Harrolda, A. Sharmab, and S. Sheatherc 
aResearch Institute for Humanity and Nature, Kyoto, Japan (harrold@chikyu.ac.jp) 

b School of Civil and Environmental Engineering, The University of New South Wales, Australia 
(a.sharma@unsw.edu.au) 

c Australian Graduate School of Management 

Abstract: Many existing methods of daily rainfall generation assume that daily rainfall depends exclusively 
on the rainfall that occurred in the past one, two, or three days, an assumption that results in an under-
representation of variability at longer time-scales. Such reduced variability affects the representation of 
sustained wet spells and droughts, features that are of great interest in catchment planning and management. 
The approach of Harrold et al. (2002) is designed to give a better representation of rainfall variability. This 
paper applies the approach of Harrold et al. (2002) to daily rainfall from 13 locations in Australia. These 
locations provide a broad range of rainfall regimes, ranging from temperate to semi-arid to tropical. 
Conclusions are drawn regarding the flexibility and ease of application of the approach, and the length of 
record required to calibrate the multi-predictor rainfall occurrence and rainfall amount models. 
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1. INTRODUCTION 

Australian rainfall records contain complex low-
frequency features that are associated with 
climate variability. Harrold et al. (2002) presented 
a nonparametric model for generation of daily 
rainfall that considers these low-frequency 
features in its formulation, and showed that their 
nonparametric model, which incorporates longer-
term predictors that are internal to the rainfall 
sequence, produces a more appropriate 
representation of both the short-term correlation 
structure of rainfall amounts and of rainfall 
variability at long time scales compared to models 
which incorporate fewer predictors. The 
sequences generated by the nonparametric model 
may be of use in catchment studies, especially 
when climate-related variability is being 
investigated; such sequences are used as a tool for 
exploring the potential variability in the 
catchment response.  

A focus of this paper, which was not included in 
Harrold et al (2002) due to space limitations, is on 
the methodology for predictor selection. 
Traditionally used criteria for selecting the 
predictors for a model, including the Akaike 
Information Criterion (AIC) (Akaike, 1974) and 
the Bayesian Information Criterion (BIC) 
(Schwarz, 1978), are based on one-day-ahead 
forecasts made using the model. However, the 
quality of the one-day-ahead forecasts does not 
indicate whether the sequences generated by the 

model will reproduce historical longer-term 
variability. Jimoh and Webster [1996] propose 
that the use of frequency-duration curves of dry 
and wet spell lengths can provide an alternative 
method of model identification. Others who have 
used alternative methods for assessing model 
performance include Gregory et al. (1993), who 
state that reproduction of seasonal variance 
provides a crucial test of stochastic weather 
generators; and Wilks (1999), who tested seasonal 
variance, extreme daily precipitation, and runs of 
consecutive dry and wet days. A procedure for 
selecting predictors based on the quality of 
generated sequences is presented here. 

In this paper, the approach of Harrold et al. 
(2002) is applied to rainfall from 13 locations in 
Australia. The selected locations provide a range 
of climates (from temperate to semi-arid to 
tropical) on which to test the approach.  

2. THE DAILY RAINFALL MODEL 

Generation of daily rainfall can be treated as a 
two-stage process, with the entire sequence of wet 
and dry days being generated before the amounts 
on wet days are calculated. This is the approach 
of Harrold et al. (2002). A brief outline of the 
approach is given here. 

2.1 Rainfall occurrence 

The occurrence model (termed ROG(j) to denote 
“Rainfall Occurrence Generator” with j predictor 



variables) uses a moving window approach 
(Rajagopalan et al. 1996) to give a smooth 
representation of seasonal features. A window 
length of 15 days, centred on the current calendar 
day, is used to form a local subset of data for use 
in the model for that day. Simulation proceeds 
using nearest-neighbour methods (Sharma and 
Lall, 1999) to resample historical values and 
insert them into the generated sequence. The 
resampling is conditional to the values of the 
predictors that are being used in the model, which 
for Sydney rainfall were chosen as: 

1. Rainfall occurrence on the previous day. 
2. The wetness state (very wet, wet, average, 

dry, or very dry) for the previous 90 days. 
3. The wetness state for the previous year, 

leading up to the current day. 
4. The wetness state for the previous five years, 

leading up to the current day. 

In this approach, a value is resampled from the 
successors to the k historical “neighbours” to the 
current pattern formed by the predictors in the 
generated sequence. k is a key parameter in this 
methodology; a poor choice of k can lead to bias 
in the generated sequences.  

2.2 Rainfall amount 

Chapman (1998) showed that stochastic models 
that treat rainfall amounts as separate classes 
based on the number of adjoining wet days (0, 1, 
or 2), result in a better fit than stochastic models 
that treat the data together, because the 
distributional characteristics of each class are 
different. Harrold et al. (2002) give separate 
treatment to four classes of amount, subdividing 
Class 1 into Class 1a (days at the start of wet 
spells) and Class 1b (days at the end of wet 
spells).  

The Harrold et al. (2002) model for rainfall 
amounts is called RAG to denote “rainfall amount 
generator”. The one-predictor RAG(1) model uses 
rainfall amount on the previous day as a short-
term predictor. This model generates amounts 
from a conditional probability density function 
formed from the Class 0 amounts (or Class 1a, 
Class 1b, or Class 2 amounts, as appropriate, 
along with the rainfall amounts on the previous 
day) that fall within a 31-day moving window 
centred on the day of interest. RAG is 
implemented using kernel estimation of the 
probability densities (Sharma and O’Neill 2002). 
Kernel density estimation methods form a 
smoothed empirical probability distribution from 
the historical record, and generate values from 
this empirical distribution. Details on this 
methodology can be found in Srikanthan et al. 
(2003) and Harrold et al. (2002). 

Because of complex low-frequency features in the 
historical record of amounts, Harrold et al. (2002) 
introduced a second predictor into their model for 
both Sydney and Melbourne rainfall amounts, 
conditioning the model on the wetness state for 
the previous year (very dry, dry, average, wet, or 
very wet), based on the number of wet days over 
this period. The resulting two-predictor model, 
which is denoted as RAG(2), is formulated in the 
same way as RAG(1), except the observations are 
separated into five datasets according to the 
historical values of the wetness state. The values 
of the wetness state in the generated sequence 
determine which dataset to use in the simulation 
for a particular day.  

3. PREDICTOR SELECTION 

Harrold et al. (2002) propose that variability in 
rainfall can be reproduced by linking an 
occurrence model that reproduces observed 
longer-term variability in the pattern of wet and 
dry days with a simpler model for rainfall 
amounts. The selection of predictors for both the 
occurrence and amounts models in this approach 
is based on the quality of the generated 
sequences. One predictor at a time is added to the 
existing predictor set, and the resulting model is 
evaluated by generating 100 sequences from the 
model, of the same length as the historical record, 
and then comparing the characteristics of the 
generated sequences with the characteristics of 
the historical record. The best performing 
predictor is chosen at each step of this procedure. 
We use this assessment method as the basis for 
selecting the predictors and the value of 
smoothing parameters for both the occurrence and 
amounts models.  

A graphical illustration of this predictor selection 
method is given in Figures 1 and 2. The Figures 
show a “panel of plots” for the ROG(1) and 
ROG(4) models for Sydney rainfall occurrence, 
where ROG(4) incorporates all the predictors 
listed in section 2.1, and ROG(1) only 
incorporates the short-term predictor. In each plot, 
the historical values of each statistic are shown as 
either dots, or as connected line segments, and the 
distribution of the generated values of each 
statistic (from each of the 100 generated 
sequences) are shown as either 5%, median, and 
95% lines, or as box plots with the whiskers 
defining the 5% and 95% values. Detailed 
descriptions of each plot type in the “panel of 
plots” are given in Harrold (2002), and are not 
repeated here for space reasons; instead, both 
“panels of plots” are shown here to give an 
overall impression of the difference in 
performance between the two models.  
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Figure 1.  ROG(1): Panel of plots for Sydney rainfall occurrence. 
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Figure 2.  ROG(4): Panel of plots for Sydney rainfall occurrence. 

A key statistic that is shown in both Figure 1 and 
Figure 2 is the distribution of wet days per year, 

shown in the upper right-hand plot. If the median 
of the generated sequences provides a good fit to 



the observed values of this distribution, then other 
statistics (especially annual means and annual 
standard deviations, but also seasonal means, 
seasonal standard deviations, and the distribution 
of wet and dry spell lengths) were also well 

matched by the ROG model. The sum of squared 
residuals (SSR), based on the differences between 
the observed values and the median generated 
values in Figure 1, can be used to assess the 
quality of the model that produced the sequences. 

 

Table 1. ROG models for eight of the 13 locations. 

Location 
Record 
length 
(years) 

Model α a Annual 
mean (days)a 

SSR of 
wetdays/year 

Lag-1 corr. 
of 

wetdays/year 
Adelaide 115  

ROG(1) 
ROG(2) 

 
1 
8 

122.8 
-0.2 
-0.2 

 
371 
294 

0.04 
-0.05 
-0.01 

Alice 
Springs 

81  
ROG(1) 
ROG(2) 

 
1 
8 

38.2 
0.0 
-3.7 

 
674 

1603 

0.35 
-0.35 
-0.32 

Brisbane 96  
ROG(1) 
ROG(2) 

 
1 
8 

117.0 
0.1 
-0.2 

 
3037 
421 

0.00 
-0.01 
0.03 

Broome 48  
ROG(1) 
ROG(2) 

 
1 
8 

46.3 
-0.2 
-2.3 

 
1015 
792 

-0.03 
0.01 
0.01 

Cowra 37  
ROG(1) 
ROG(2) 

 
1 
8 

96.5 
-0.4 
-2.7 

 
1612 
1478 

0.17 
-0.15 
-0.16 

Darwin 59  
ROG(1) 
ROG(2) 

 
1 
8 

98.9 
-0.4 
-0.2 

 
939 
336 

0.10 
-0.11 
-0.09 

Melbourne 144  
ROG(1) 
ROG(2)  
ROG(3) 
ROG(4)c 

 
1 
8 
2 

0.5 

149.2 
0.1 
0.0 
0.2 
-0.1 

 
5949 
1227 
374 
306 

0.53 
-0.53 
-0.47 
-0.25 
-0.15 

Sydney 140  
ROG(1) 
ROG(2) 
ROG(3) 
ROG(4) 

 
1 
6 
2 
1 

143.5 
0.2 
-0.2 
-0.2 
0.0 

 
11710 
1657 
954 
950 

0.50 
-0.51 
-0.44 
-0.27 
-0.18 

a α is a smoothing parameter used to specify the number of nearest neighbours k used in each model; 
nk α=  where n is the sample size. 

b Values shown in italics in this and the last column are biases. “Bias” is the absolute difference between the 
observed value and the mean of values from 100 sequences generated by the given model.  
c For Melbourne, the multi-year predictor was chosen as the 4-year wetness state. 

4. RESULTS FOR 13 LOCATIONS 

In applying the above predictor selection 
methodology, we found that the specification of 
the short-term predictor was not problematic; 
Harrold (2002) shows that the value on the 
previous day is the best short-term predictor for 
either occurrence or amount. More effort was 
required, however, to select the smoothing 
parameter k for the multi-predictor models, and to 
determine whether seasonal-level, annual-level, 

and multi-year predictors were required at a 
particular location. We obtained k by trialling a 
range of possible values, given by nk α=  
where n is the sample size. Even though the range 
of statistics shown in Figures 1 and 2 were 
examined, in this paper we summarise the 
performance of a model incorporating a given 
predictor set and k value, using the following 
statistics: 

1. Bias in the annual mean wet days per year; 



2. SSR from the distribution of wet days per year; 

3. Bias in the lag-1 correlation of wet days per 
year. 

Bias in the annual mean is related to inappropriate 
selection of k. The distribution of wet days per 
year can be optimised by appropriate selection of 
the seasonal and annual-level predictors, and the 
correlation of wet days per year can be optimised 
through the use of the multi-year predictor. 

The results for selection of the ROG model for 
eight of  the 13 locations are shown in Table 1. 
Initial results for testing one-predictor and two-
predictor ROG models are shown for six locations 
(using rainfall occurrence on the previous day as 
the first predictor, and the 90-day wetness state as 
the second predictor), followed by the models 
selected for Melbourne and Sydney. The results 
for the latter two models are as reported in 
Harrold et al. (2002). It can be seen that the initial 
choice of α for the two-predictor models works 
for some locations (Adelaide, Brisbane and 
Darwin), but not for others (Alice Springs, 
Broome, and Cowra, where the generated annual 
means are biased). ROG(2) with α = 0.8 provides 
a good fit to the Adelaide and Brisbane observed 
data; it appears that no more than two predictors 
for occurrence are required at these locations (we 
also trialed ROG(3) models here, but the addition 
of the annual-level predictor did not improve the 
results). 

Alice Springs, Cowra and Darwin have 
correlations of wet days per year that are greater 
than zero. We trialed ROG(3) models at these 
locations. For Alice Springs and Cowra, the 
ROG(3) model gave a better representation of the 
lag-1 correlations than the ROG(2) model. The 
addition of a multi-year predictor to form ROG(4) 
may also be worthwhile. 

We also trialed ROG models at Kalgoorlie, 
Mackay, Monto, Perth, and Tenterfield. Initial 
results suggest that full 4-predictor models may 
be required at Kalgoorlie, Mackay and Perth, and 
three-predictor models should provide a good fit 
to Monto and Tenterfield rainfall occurrence.  

5. CONCLUSIONS 

This paper has applied the model of Harrold et al. 
(2002) to the historical rainfall record from 13 
locations in Australia. The models and method of 
predictor selection described in this paper are 
flexible and easy to apply, although the procedure 
involves generation of many years of rainfall data 
from models that use data-intensive methods, and 
significant post-processing is required to evaluate 
the generated sequences. 

The length of record required to calibrate the 
multi-predictor rainfall occurrence and rainfall 
amount models depends on location, but in 
general, the longer the record the better. For 
Adelaide and Brisbane, only two predictors were 
required for the rainfall occurrence model, but for 
other locations (such as Sydney and Melbourne), 
four predictors were required, and the longer-term 
features of the historical record were still not 
perfectly reproduced. It is difficult to give a 
physical interpretation for the differences in 
results from location to location. However, 
limiting the predictor set to daily-level, seasonal-
level, annual-level, and multi-year predictors 
seems appropriate for all the locations that were 
tested.  
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