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Abstract: This paper describes two modelling techniques applied to a case study of settlement prediction of
shallow foundations on granular soils.  The first technique uses multi-layer perceptrons (MLPs) that are
trained with the back-propagation algorithm, whereas the second technique uses B-spline neurofuzzy net-
works that are trained with the adaptive spline modelling of observation data (ASMOD) algorithm.  The per-
formance of the models obtained using both techniques is assessed in terms of prediction accuracy, model
parsimony and model transparency.  The results indicate that both the back-propagation MLP and the B-
spline neurofuzzy models are comparable in terms of prediction accuracy, although the back-propagation
MLP model is found to perform slightly better than the B-spline neurofuzzy model.  In terms of model par-
simony, the B-spline neurofuzzy model is found to be more parsimonious than the back-propagation MLP
model.  In terms of model transparency, the B-spline neurofuzzy model is found to provide a more explicit
interpretation of the relationships between the model inputs and the corresponding outputs.
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1 INTRODUCTION In this paper, the two types of ANNs mentioned
above are applied to a case study of predicting set-
tlement of shallow foundations on granular soils.
The obtained models are compared in terms of 
prediction accuracy, model parsimony and model
transparency.

Artificial neural networks (ANNs) (Fausett 1994)
are numerical modelling techniques that are in-
spired by the functioning of the human brain and
nerve system.  ANNs have been applied success-
fully to many aspects of geotechnical engineering.
In the majority of these applications, multi-layer
perceptrons (MLPs) that are trained with the back-
propagation algorithm are used.  This can be at-
tributed to the fact that MLPs trained with back-
propagation have a high capability of data map-
ping.  However, one shortcoming of such MLPs is
that the knowledge acquired in the trained network
is stored in its connection weights in a complex
manner that is often difficult to interpret. On the
other hand, B-spline neurofuzzy networks that are
trained with the adaptive spline modelling of ob-
servation data (ASMOD) algorithm can perform
input/output data mappings, similar to the way
MLPs do, with the additional benefit of being able
to translate the acquired knowledge into a set of
fuzzy rules that describe the model input/output re-
lationships in a more transparent fashion.

2 BACK-PROPAGATION MULTI–LAYER
PERCEPTRONS

A typical structure of MLPs consists of a number
of processing elements (PEs), or nodes, that are
usually arranged in layers: an input layer, an out-
put layer and one or more hidden layers (Figure 1).

Figure 1. Structure and operation of an MLP

1886



Each PE in a specific layer is fully or partially 
joined to many other PEs via weighted connec-
tions.  The input from each PE in the previous 
layer (xi) is multiplied by an adjustable connection
weight (wji). At each PE, the weighted input sig-
nals are summed and a threshold value or bias ( j)
is added or subtracted. This combined input (Ij) is
then passed through a non-linear transfer function
(f(.)) (e.g. sigmoidal function or tanh function) to
produce the output of the PE (yj).  The output of
one PE provides the input to the PEs in the next
layer.  This process is summarised in Equations 1 
and 2 and illustrated in Figure 1.

jijij xwI summation   (1)

)( jj Ify transfer   (2)

The propagation of information in MLPs starts at 
the input layer where the network is presented with
a historical set of input data.  The actual output of
the network is compared with the desired output
and an error is calculated. Using this error and
utilising a learning rule, the network adjusts its 
weights until some stopping criterion is met so that
the network can find a set of weights that will pro-
duce the input/output mapping that has the small-
est possible error.  This process is called “learn-
ing” or “training”. One common stopping
criterion is the cross-validation technique proposed
by Stone (1974).  Cross-validation requires the
data to be divided into three sets; a training set, a 
testing set and a validation set.  The training set is 
used to adjust the connection weights, the testing
set is used to decide when to stop training to avoid
overfitting and the validation set is used to test the
predictive ability of the model in real-world situa-
tions.

3 B-SPLINE NEUROFUZZY NETWORKS

Neurofuzzy networks use the fuzzy logic system to
store the knowledge acquired between a set of in-
put variables (x1, x2, …, xn) and the corresponding
output variable (y) in a set of linguistic fuzzy rules
that can be easily interpreted, such as: IF (x1 is 
high AND x2 is low) THEN (y is high), c=0.9,
where (c=0.9) is the rule confidence which indi-
cates how much the above rule has contributed to 
the output.  As part of any fuzzy logic system, two
main components (i.e. fuzzy sets and fuzzy rules)
need to be determined.  In order to determine the
fuzzy sets, linguistic terms (e.g. small, medium
and large) can be interpreted mathematically in the
form of membership functions, and model vari-

ables are fuzzified to be partial members of these
membership functions in the interval grade (0,1).
This means that, for a fuzzy set A, an input vari-
able x is fuzzified to be a partial member of the
fuzzy set A by transforming it into a degree of
membership of function uA(x) of interval (0,1).  B-
spline basis functions are piecewise polynomials
of order k that can be used as one form of member-
ship function.  For each variable, the fuzzy sets
overlap and cover the necessary range of variation 
for that variable in a process called fuzzification. It
should be noted that the model output of a fuzzy
set is fuzzy too, and in order to obtain a real-
valued output, defuzzification is needed. The
mean of maxima and centre of gravity are the most
popular defuzzification algorithms (Brown and
Harris 1994).

A typical structure of a B-spline neurofuzzy net-
work contains three layers: an input layer; a single
hidden layer; and an output layer (Brown and Har-
ris 1994).  The input layer normalises the input
space in a p-dimensional lattice (Figure 2).  Each 
cell of the lattice represents similar regions of the
input space.  The hidden layer consists of B-spline
basis functions, which are defined on the normal-
ised input space.  The size, shape and overlap of
the basis functions determine the structure and
complexity of the network. The output layer sums
the weighted outputs from the basis functions to
produce the network output using the following
equation:

p

i
ii way

1

(3)

where y = model output; ai = output from the pth
basis function; and wi = connection weight associ-
ated with ai. This output is compared with the ac-
tual measured output and a connection error is cal-
culated.  Using this error and implementing a 
learning rule, the neurofuzzy network adjusts its
weights and determines its fuzzy parameters (i.e.
fuzzy sets and rules).

Figure 2. Typical structure of a neurofuzzy net-
work (Brown and Harris 1994).
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One major disadvantage of B-spline neurofuzzy
networks is the so-called curse of dimensionality,
in which the number of fuzzy rules is exponen-
tially dependent on the dimension of the input
space.  This results in a large number of fuzzy
rules and, consequently, impractical model repre-
sentation.  The analysis of variance (ANOVA) rep-
resentation is one useful approach to overcome this
problem (Brown and Harris 1994).  ANOVA de-
composes an n-dimensional function into a linear
combination of a number of separate functions, as
follows (Brown and Harris 1994):
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where f0 represents a constant (the function bias);
and the other terms represent the univariate, bi-
variate and high-order subfunctions.  In many
situations, the majority of high-order terms are
zero or negligible, resulting in a limited number of
subfunctions (often called subnetworks) of much
lower dimensions that approximate the network
input/output mapping.  It should be noted that each 
subnetwork in the ANOVA description represents
a neurofuzzy system of its own and the overall
model output is produced by summing outputs of
all subnetworks.

The adaptive spline modelling of observation data
(ASMOD) proposed by Kavli (1993) is an algo-
rithm that can be used to automatically obtain the
optimal structure of B-spline neurofuzzy networks
and select model inputs that have the most signifi-
cant impact on outputs. The algorithm starts with 
a simple model (e.g. only one variable with two 
membership functions) and iteratively refines the
model structure during training so as to gradually
increase model capability until some stopping cri-
terion is met. Possible refinements include adding
or deleting input variables, forming multi-variate
subnetworks using ANOVA, and increasing the 
number and dimension of an individual subnet-
work.  For every refinement, the impact of net-
work pruning is evaluated and the network that has
the simplest structure with the best performance is
chosen.  One common stopping criterion is the 
Bayesian Information Criterion (BIC) given by
Brown and Harris (1994), as follows:

)ln()ln( LpMSELK  (5)

where K = performance measure; p = size of cur-
rent model; MSE = mean square error; and L =
number of data pairs used to train the model.  The 
measure, given in Equation 5, balances model
complexity, the number of training data, and 
model error.  It should be noted that the BIC stop-

ping criterion requires the data to be divided into
two sets; a training set to build the model and an 
independent validation set to test the predictive
ability of the model in real-world situations.

4 CASE STUDY

The case study considered in this research is con-
cerned with predicting the settlement of shallow
foundations on granular soils.  The settlement of
shallow foundations is usually divided into imme-
diate and consolidation settlements.  Immediate
settlement occurs with load application during, or 
immediately after, the construction of a structure.
It is primarily due to the distortion and reorienta-
tion of soil grains.  Consolidation settlement, on
the other hand, generally takes months to years to
occur and is due to the dissipation of pore water 
pressure over time.  For granular soils (sand and
gravel) which are the subject of this paper, only
the immediate settlement is of interest, whereas
consolidation settlement is the major concern for 
cohesive soils (silt and clay).  Immediate settle-
ment of shallow foundations on granular soils usu-
ally causes relatively rapid deformations of super-
structures, which results in an inability to remedy
damage and to avoid further deformation. As a
consequence, settlement is a major concern and is 
an essential criterion in the design process of shal-
low foundations on granular soils.

It is generally accepted that five parameters have
the most significant impact on the settlement of 
shallow foundations on granular soils (Burland and 
Burbidge 1985; Shahin et al. 2002b).  These in-
clude the footing width (B), footing net applied
pressure (q), soil compressibility (or density)
which can be represented by the average blow 
count (N) obtained from the standard penetration
test (SPT) over the depth of influence of the foun-
dation, footing geometry (L/B) and footing em-
bedment ration (Df /B).  The data used in this re-
search comprise a total of 189 individual cases
(Shahin et al. 2002b) that include field measure-
ments of shallow foundations, as well as the corre-
sponding information regarding footings and soils.

As recommended by Burland and Burbidge
(1985), the values of N used in this research have
not been corrected for overburden pressure nor
submergence.  However, for very fine and silty 
sand below the water table, the submergence cor-
rection proposed by Terzaghi and Peck (1948),
when N > 15 is used, as follows:

)15(5.015 NN corrected  (6)
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For gravel or sandy gravel, the correction proposed
by Burland and Burbidge (1985) is used, as fol-
lows:

NN corrected 25.1  (7)

It should also be noted that the depth of influence
over which N is measured is that proposed by Bur-
land and Burbidge (1985), as follows. When N is
decreasing with depth, the depth of influence is
taken to be equal to the lesser of 2B or the depth
from the bottom of the footing to bedrock. On the
other hand, when N is constant or increasing with
depth, the depth of influence is taken to be equal to
B0.75.

5 DEVELOPMENT OF ANN MODELS 

5.1 Back-propagation MLP Model 

The MLP model used in this work was developed
by Shahin et al. (2002b) and was implemented us-
ing the commercial software package Neuframe
Version 4.0 (Neusciences 2000).  The model in-
puts were the footing width (B), footing net ap-
plied pressure (q), the average SPT blow count (N)
over the depth of influence of the foundation, foot-
ing geometry (L/B) and footing embedment ration
(Df /B). The measured settlement (Sm) was the sin-
gle output.  The available data were randomly di-
vided into three sets (i.e. training, testing and vali-
dation) in such a way that they are statistically
consistent and thus represent the same statistical
population (Masters 1993).  In total, 80% of the
data were used for training and 20% were used for
validation.  The training data were further divided
into 70% for the training set and 30% for the test-
ing set.  Before presenting the input and output
variables for MLP model training, they were 
scaled between 0.0 and 1.0 to eliminate their di-
mension and to ensure that all variables receive 
equal attention during training.  The optimal model
geometry was determined utilising a trial-and-error
approach in which MLP models were trained using
one hidden layer with 1, 2, 3, 5, 7, 9 and 11 hidden
layer nodes, respectively.  It should be noted that
one hidden layer can approximate any continuous
function, provided that sufficient connection
weights are used (Hornik et al. 1989). It should
also be noted that 11 is the upper limit for the
number of hidden layer nodes needed to map any
continuous function for a network with 5 inputs, as 
proposed by Caudill (1988). The optimal network
parameters were obtained by training the MLP 
model with different combinations of learning
rates and momentum terms.  A model with 2 hid-
den layer nodes, a learning rate of 0.2, a momen-

tum term of 0.8, tanh transfer function for the hid-
den layer nodes and sigmoidal transfer function for
the output layer node was found to perform best
(Shahin et al. 2002b).

The performance of the MLP model obtained is 
summarised in Table 1.  It can be seen that three
different performance measures are used, includ-
ing the coefficient of correlation (r), the root mean
square error (RMSE) and the mean absolute error 
(MAE). It can also be seen that the model per-
forms well, as it has high coefficients of correla-
tion, r, and low RMSEs and MAEs in the training,
testing and validation sets.

Table 1. Performance of the MLP model.
Data set r RMSE (mm) MAE (mm)
Training 0.930 10.01 6.87
Testing 0.929 10.12 6.43
Validation 0.905 11.04 8.78

5.2 B-spline Neurofuzzy Model

The B-spline neurofuzzy network used in this
work was developed by Shahin et al. (2003) and
was again implemented using the commercial
software package Neuframe Version 4.0
(Neusciences 2000).  The factors affecting settle-
ment, i.e. the footing width (B), footing net applied
pressure (q), the average SPT blow count (N) over
the depth of influence of the foundation, footing
geometry (L/B) and footing embedment ration (Df

/B), are presented to the neurofuzzy model as po-
tential model input variables.  The measured set-
tlement (Sm) is the single model output variable.
The ASMOD algorithm, described in Section 3, is 
used for model optimisation.  As mentioned previ-
ously, the ASMOD algorithm automatically opti-
mises model architecture and selects the input
variables that have the most significant impact on
model outputs.  The ASMOD algorithm also uses
stopping criteria (e.g. BIC) that require the data to
be divided into two sets; training and validation.
In this work, the training and testing sets used to
develop the MLP model in Section 5.1 are com-
bined to form the training set for the neurofuzzy
network, whereas the validation set is kept the
same and thus, a fair comparison between the MLP
and neurofuzzy models can be carried out.  Using
this procedure, 80% of the available data are used
for training and 20% are used for validation.

The performance of the neurofuzzy model ob-
tained is shown in Table 2. It can be seen that the
model performs well, as it has high coefficients of
correlation, r, and low RMSEs and MAEs for the
training and validation sets.

1889



Table 2. Performance of the neurofuzzy model.
Data set r RMSE (mm) MAE (mm)
Training 0.889 12.33 8.08
Validation 0.881 12.36 9.36

A schematic view of the model obtained is given
in Figure 3. It can be seen that the model uses 
only 3 of the 5 potential input variables as the most
significant inputs.  The chosen inputs are the foot-
ing width (B), footing net applied pressure (q) and
the average SPT blow count (N). It can also be
seen that the model has one 1D and one 2D sub-
network. In each of the subnetworks obtained, tri-
angular membership functions of order 2 are used
for all input variables, as shown in Figure 4.  It can
be seen from this figure that the membership func-
tions of B, q and Sm are presented over a two-
valued linguistic universe (i.e. small and large for
B, light and heavy for q, and low and high for Sm).
On the other hand, the membership functions of
the soil density, which is represented herein by the
average SPT blow count, N, is presented over a
four-valued linguistic universe (i.e. loose, medium,
dense, and very dense). As a result, the first sub-
network contains 8 rules while the second subnet-
work contains 2 rules, resulting in a model with 10
fuzzy rules, as listed in Table 3.  It should be noted
that the number between brackets in Table 3 repre-
sents the rule confidence described in Section 3.

B

q

N

Sm

Subnetwork 1 (2D)

Subnetwork 2 (1D)

Figure 3. Schematic representation of the neuro-
fuzzy model.
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Figure 4. Membership functions of input variables
used by the neurofuzzy model.

The fuzzy rules in Table 3 are a valuable source of
information from which knowledge can be ex-
tracted that governs the relationship between set-
tlement and the factors affecting settlement.  It
should be noted that the range of applicability of
the fuzzy rules in Table 3 is constrained by the

quality of the data used in the model calibration
phase.  Consequently, it is unlikely that they pro-
vide a general representation of the relationship
between settlement and the factors affecting it. 
However, in general, the fuzzy rules obtained are 
in agreement with what one would expect based on 
the underlying physical meaning of the settlement
problem.  It can also be seen from Table 3 that
Rules 9 and 10 seem to conflict with what one
would expect based on the underlying physical
meaning of the settlement problem.  Rules 9 and 
10 indicate that settlement is most likely to be low
regardless of whether the applied load is light or
heavy.  The most likely reason for this is that there
were insufficient training data to cover the full
range of possible high settlement conditions.

Table 3. Fuzzy rules extracted by the neurofuzzy
model.

Subnet
work
No.

Rule
No.

Rule

1 IF “Footing width” is Small AND “Soil”
is Loose
THEN “Settlement” is Low (0.84)
OR “Settlement” is High (0.16)

2 IF “Footing width” is Large AND “Soil” 
is Loose
THEN “Settlement” is High (1.00)

3 IF “Footing width” is Small AND “Soil”
is Medium density
THEN “Settlement” is Low (0.99)
 OR “Settlement” is High (0.01)

4 IF “Footing width” is Large AND “Soil” 
is Medium density
THEN “Settlement” is Low (0.44)
OR “Settlement” is High (0.56)

5 IF “Footing width” is Small AND “Soil”
is Dense
THEN “Settlement” is Low (0.96)
OR “Settlement” is High (0.04)

6 IF “Footing width” is Large AND “Soil” 
is Dense
THEN “Settlement” is Low (0.86)
OR “Settlement” is High (0.14)

7 IF “Footing width” is Small AND “Soil”
is Very Dense
THEN “Settlement” is Low (1.00)

1

8 IF “Footing width” is Large AND “Soil” 
is Very Dense
THEN “Settlement” is Low (0.86)
OR “Settlement” is High (0.14)

9 IF “Net applied pressure” is Light
THEN “Settlement” is Low (0.96)
OR “Settlement” is High (0.04)

2

10 IF “Net applied pressure” is Heavy
THEN “Settlement” is Low (0.87)
OR “Settlement” is High (0.13)

6 COMPARISON OF MLP AND B-SPLINE
NEUROFUZZY MODELS

A comparison between the back-propagation MLP
and B-spline neurofuzzy models is carried out in
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terms of model accuracy, model parsimony and 
model transparency.  A summary of the number of 
inputs and connection weights used by each model 
is given in Table 4.  The performance results of the 
two models with respect to the validation set are 
also given in Table 4.  In terms of model accuracy, 
it can be seen that the two models are comparable, 
although the MLP model performs slightly better 
than the neurofuzzy model.  In terms of model par-
simony, the neurofuzzy model is found to be more 
parsimonious than the back-propagation MLP 
model, as it has a smaller number of model inputs 
and connection weights.  In terms of model trans-
parency, the neurofuzzy model is found to provide 
a more explicit interpretation of the relationships 
between model inputs and the corresponding out-
put in the form of a set of linguistic fuzzy rules 
that describe the model in a more transparent fash-
ion (Table 3).  However, it was shown by Shahin 
et al. (2002a) that the small number of hidden 
layer nodes of the MLP model enabled the transla-
tion of the model into a relatively simple equation 
that provides a valuable insight into the relation-
ships between the model inputs and the corre-
sponding outputs.  For large MLP models with a 
larger number of inputs and hidden layer nodes, a 
derivation of such an equation could be difficult 
and consequently, the use of neurofuzzy models 
would be better in such situations. 

Table 4. Comparison between the MLP and neuro-
fuzzy models. 

Model performance on 
the validation set 

Model 
type

No. of  
inputs

No. of  
connec-
tion
weights

r RMSE
(mm) 

MAE
(mm) 

MLP 5 12 0.91 11.04 8.78 
Neuro-
fuzzy 

3 8 0.88 12.36 9.36 

7 CONCLUSIONS 

In this paper, two types of modelling techniques 
that adopt artificial neural networks (ANNs) were 
examined for a case study of settlement prediction 
of shallow foundations on granular soils.  The first 
type was multi-layer perceptrons (MLPs) that are 
trained with the back-propagation algorithm, 
whereas the second type was B-spline neurofuzzy 
networks that are trained with the adaptive spline 
modelling of observation data (ASMOD) algo-
rithm.  The MLP and neurofuzzy models devel-
oped were compared in terms of prediction accu-
racy, model parsimony and model transparency.  
In terms of prediction accuracy, it was found that 
the two models are comparable although the MLP 
model performs slightly better that the neurofuzzy 
model.  In terms of model parsimony, it was found 
that the neurofuzzy model is more parsimonious 

than the MLP model with fewer model inputs and 
connection weights.  In terms of model transpar-
ency, it was found that the neurofuzzy model is 
more transparent than the MLP model, as it was 
able to describe the relationship between model 
inputs and the corresponding output in the form of 
a set of fuzzy rules.  
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