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Abstract: In recent years, research in nonlinear time series analysis has grown rapidly. Substantial empirical
evidence of nonlinearities in economic time series fluctuations has been reported in the literature. Nonlinear
time series models have the advantage of being able to capture asymmetries, jumps, and time irreversibility
which are characteristics of many observed financial and economic time series. As compared to the linear
models, the nonlinear time series models provide a much wider spectrum of possible dynamics for the economic
time series data. In this paper, we explore the use of nonlinear time series models to analyze Australian interest
rates. In particular, we concentrate on the class of bivariate threshold autoregressive (BTAR) models. Monthly
Australian interest rates from 1957.1 to 2002.8 are considered. The series under study are 2-year and 15-year
government bonds, representing short-term and long-term series in the term structure of interest rates. A BTAR
model is fitted to the observed vector series and the results show that the dynamic structure of the two interest
rate series depends heavily on the status (expansion versus contraction) of the economy.
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1. INTRODUCTION

The class of threshold autoregressive (TAR) models
(Tong, 1978 and 1983) has been widely employed
in the literature to explain various empirical non-
linear phenomena observed in economic time se-
ries. See, e.g., Krag̈er and Kugler (1993), Peel and
Speight (1994) and Chappell et al. (1996) for for-
eign exchange rate variables; Yadav et al. (1994)
for futures market; Tiao and Tsay (1994) and Potter
(1995) for US GNP; Montgomery et al. (1998) for
US unemployment; and De Gooijer and Vidiella-i-
Anguera (2003) for monthly inflation rates.

The size and the level of sophistication of the
market of fixed income securities around the world
increased dramatically over the last 10 years and it
became a prime test bed for financial institutions
and academic research. Interest rate models are
crucial to financial economists to price derivatives
such as swaps, quantify and manage financial risk,
and set monetary policy. Actuaries are also being
called upon to incorporate interest rate models in a
variety of applications, including dynamic financial
analysis (DFA), ratemaking, and valuation (Wilkie,
1995).

In this paper, we explore the use of nonlin-
ear threshold models to analyze Australian inter-
est rates. In particular, we concentrate on the class
of bivariate threshold autoregressive (BTAR) mod-
els. Monthly Australian interest rates from 1957.1
to 2002.8 are considered. The series under study are
2-year and 15-year government bonds, representing
short-term and long-term series in the term struc-
ture of interest rates. A BTAR model is fitted to the
observed vector series and the results show that the
dynamic structure of the two interest rate series de-
pends heavily on the status (expansion versus con-
traction) of the economy.

The paper proceeds as follows. Section 2 pro-
vides a brief review on BTAR modelling. Section 3
presents the empirical results. Discussion and con-
clusion follow in the final section.

2. BIVARIATE TAR MODELS

2.1 The Model

Tsay (1998) generalizes the univariate threshold
principle to a multivariate framework. In this article,
we consider a bivariate time series Yt = (y1t, y2t)′.
A k-regime BTAR (d; p1, . . . , pk) model is defined
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where k is the number of regimes in the model,
d is the delay parameter, pi is the autoregressive
order in the ith regime of the model, C(i)

0 are

(2 × 1)-dimensional constant vectors and Φ(i)
j are

(2 × 2)-dimensional matrix parameters for i =
1, . . . , k. The threshold parameters satisfy the con-
straint −∞ = r0 < r1 < r2 < . . . < rk−1 < rk =
∞. The innovational vectors in the ith regime sat-
isfy ε

(i)
t = Σ1/2

i at, where Σ1/2
i are symmetric pos-

itive definite matrices and {at} is a sequence of seri-
ally uncorrelated normal random vectors with mean
0 and covariance matrix I, the (2 × 2)-dimensional
identity matrix. The threshold variable zt−d is as-
sumed to be stationary, and it depends on the ob-
servable past history of Yt−d. For example, we can
set

zt−d = ω′ Yt−d

where ω is a pre-specified (2×1)-dimensional vec-
tor. When ω = (1, 0)′, the threshold variable is sim-
ply zt−d = y1,t−d. When ω = ( 1

2 , 1
2 )′, the thresh-

old variable is the average of the two elements in
Yt−d.

2.2 Modeling Procedures

Analogous to the Tsay (1989) procedures for uni-
variate TAR modeling, Tsay (1998) extends the
method to multivariate situation. The method has
been applied successfully to many datasets, ranging
from U.S. interest rates to Icelandic river flow se-
ries. This article uses the Tsay (1998) strategy for
BTAR modeling.

Testing for Nonlinearity

Given p = max{p1, . . . , pk} and d ≤ p, we observe
the bivariate vector time series {Y1, . . . ,Yn}.
It should be noted that the threshold variable
zt−d in (1) can only assume values in Z =
{zp+1−d, . . . , zn−d}. Let (i) be the time-index of
the ith smallest observation in Z . Tsay (1998) con-
siders the multivariate generalization of the ordered
regression arrangement. Rolling ordered bivariate

autoregressions of the form
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can be arranged successively, where j = m,m +
1, . . . , n − p, and m is the number of startup obser-
vations in the ordered autoregression. Tsay (1998)
suggests a range of m (between 3

√
n and 5

√
n).

Different values of m can be used to investigate the
sensitivity of the modeling results with respect to
the choice. It should be noted that the ordered au-
toregressions are sorted by the variable zt−d, which
is the regime indicator in the BTAR model.

Let ê(m+1)+d denote the one-step-ahead stan-
dardized predictive residual from the above least
squares fitted multivariate regression for j = m.
Tsay (1998, p. 1190) provides the direct com-
putational formula for ê(m+1)+d. Alternatively,
they can be easily obtained from many commonly
used statistical software packages (e.g., Timm and
Mieczkowski, 1997). Analogous to the univariate
case, if the underlying model is a linear vector au-
toregressive process, then the predictive residuals
are white noise and they are uncorrelated to the re-
gressor X′

t = {1,Y′
t−1,Y

′
t−2, . . . ,Y

′
t−p}. How-

ever, if Yt follows a threshold process, then the pre-
dictive residuals are correlated with the regressor.
Tsay (1998) utilizes this property and considers the
multivariate regression

ê′(l)+d = X′
(l)+d β + w′

(l)+d (2)

for l = m+1, . . . , n−p with β is the matrix regres-
sion parameter and w′

(l)+d is the matrix of residuals.
The problem of testing nonlinearity is then trans-
formed to testing of the hypothesis H0 : β = 0 in
the above regression. Tsay (1998) employs the test
statistic

C(d) = (n−p−m−kp−1)×
{

ln |S0|−ln |S1|
}

(3)

where |A| denotes the determinant of the matrix A,
and

S0 =
1

n − p − m

n−p∑
l=m+1

ê(l)+d ê′(l)+d

S1 =
1

n − p − m

n−p∑
l=m+1

ŵ(l)+d ŵ′
(l)+d
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where ŵt is the least squares residual of regression
(2). Under the null hypothesis that Yt is linear,
Tsay (1998) shows that C(d) is asymptotically a
chi-squared random variable with (pk2 +k) degrees
of freedom.

Model Specification, Estimation and Diagnostic
Checking

To perform the C(d) test for nonlinearity in (3),
both values of p and d must be given. In practice,
we can select p by the partial autoregression ma-
trix (PAM) of Yt. Tiao and Box (1981) define the
PAM at lag l, which is denoted by Π(l), to be the
last matrix coefficient when the data are fitted to a
vector autoregressive process of order l. This is a
direct extension of the Box and Jenkins (1976, p.
64) definition of the partial autocorrelation function
for univariate time series. The partial autoregres-
sion matrices Π(l) of a linear vector AR(p) process
are zero for l > p. This “cut-off” property provides
very useful information for identifying the order p.
Once p is selected, d is chosen so that it gives the
most significant C(d) statistic.

In univariate TAR modeling, we use various
scatterplots for specifying the number of regimes
k and the threshold parameters (i.e., the r values).
Unfortunately, these plots are not applicable to high
dimensional multivariate TAR analysis. Following
Tong (1983, p. 186), we use Akaike’s Information
Criterion (AIC) to search for these parameters.

Given p, d, k, and Rk = {r1, . . . , rk−1}, the
full-length ordered bivariate autoregression can be
divided into regimes. For the jth regime of data, we
have a general linear model of the form

Yj = AjΦ(j) + εj (4)

where
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′
(πj−1+1)+d, Y

′
(πj−1+2)+d, . . . , Y
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where πj is the largest value of j such that {rj−1 <
z(j) ≤ rj} for j = 1, . . . , k − 1. We define π0 = 0
and πk = n− p. The number of observations in the
jth regime is nj = πj −πj−1. The least squares es-
timate of Φ(j) can be obtained by the ordinary mul-
tivariate least squares method:

Φ̂
(j)

= (A′
jAj)−1(A′

jYj). (5)

The residual variance-covariance matrix for the jth
regime can be obtained by

Σ̂j =
1
nj

nj∑
t=1

{
ε̂(πj−1+t)+d ε̂′

(πj−1+t)+d

}
. (6)

The AIC of a bivariate fitted TAR model in (1)
is defined as

AIC(p, d, k,Rk) =
k∑

j=1

{
nj ln |Σ̂j |+2k(kp+1)

}
.

(7)
Given p and d, we can search the parameters k

and Rk by minimizing the AIC. Due to the compu-
tational complexity and possible interpretations of
the final model, we usually restrict k to a small num-
ber, such as 2 or 3. For the threshold parameters Rk,
we divide the data into subgroups according to the
empirical percentiles of zt−d, and use the AIC to se-
lect the r values. Finally, the AIC is used to refine
the AR order (pk ≤ p) in each regime.

To guard against incorrectly specifying the
model, a detailed diagnostic analysis of the resid-
uals is required. This includes an examination of
the plots of standardized residuals and the sample
cross-correlation matrices of the residuals (Tiao and
Box, 1981).

3. EMPIRICAL RESULTS

In this section, we consider BTAR modeling of
monthly Australian interest rates. The series un-
der study are 2-year (x1t) and 15-year (x2t) govern-
ment bonds, representing short-term and long-term
series in the term structure of interest rates. The
data were obtained from the International Monetary
Fund (2003). The analysis will be based on the
growth series; that is, let Yt = (y1t, y2t)′, where
yit = ln(xit) − ln(xi,t−1) for i = 1, 2. The time
frame of the study is January 1957 to August 2002,
with 537 observations of Yt.

Following Tsay (1998), we employ the 3-
month moving-average “spread” of logged interest
rates as the threshold variable. Let st = ln(y1t) −
ln(y2t) be the “spread” at time t. The threshold vari-
able zt is defined as

z1 = s1, z2 = (s1 + s2)/2,

zt = (st + st−1 + st−2)/3, t ≥ 3.

Under normal conditions, interest rates are posi-
tively correlated with maturities. The correlation
between interest rates and maturities may become
negative when the economy is in contraction. Thus,
the threshold variable (zt) may be a good proxy for
the status of the economy (i.e., negative values of zt

indicating an expansion of the economy and positive
values signaling a weak economy). Figure 1 plots
the zt variable using Australian data. As expected,
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the spread assumed positive values only in the mid-
dle of 1970s and the period 1987-1992, when the
Australian economy was weak.

We first examine the partial autoregression
matrices of the observed vector time series. Tiao
and Box (1981) suggest summarizing the PAM us-
ing indicator symbols +, −, and ·, where + denotes
a value that is greater than twice the estimated stan-
dard error, − denotes a value that is less than twice
the estimated standard error, and · denotes an in-
significant value based on the above criteria. The
resulting indicator matrices for the PAM are given

in Table 1. The likelihood ratio statistic, M(l), can
be used to test the null hypothesis that a PAM is a
zero matrix (i.e., H0 : Π(l) = 0). Bartlett (1938)
shows that the M(l) statistic is asymptotically χ2

distributed with four degrees of freedom if the null
hypothesis is true. From Table 1, we observe that
the M(l) statistics drop significantly after l = 9.
This suggests that p = 9 for the C(d) test for non-
linearity. We perform the C(d) test with p = 9,
d ≤ p and m = 125. The results are given in Table
2.

Figure 1. 3-Month moving average of spread in logged Australian interest rates

Table 1. Indicator matrices for the PAM (Australian interest rate data)

Lag (l) 1 2 3 4 5 6

(
+ ·
+ −

) (
· ·
· ·

) (
· ·
· ·

) (
· ·
· ·

) (
· −
· −

) (
· ·
· ·

)

M(l) 51.15 10.84 3.46 5.58 10.87 3.01

Lag (l) 7 8 9 10 11 12

(
+ ·
· ·

) (
· ·
· ·

) (
+ ·
+ ·

) (
− ·
· ·

) (
· ·
· ·

) (
· ·
· ·

)

M(l) 6.69 4.98 17.51 6.48 1.38 0.91

∗The critical value for the M(l) test is χ2
0.95,4 = 9.50.
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Table 2. Tests for nonlinearity∗

d 1 2 3 4 5

C(d) 119.8 95.0 76.7 76.7 76.1

d 6 7 8 9

C(d) 76.3 85.7 72.8 65.4
∗The critical value for the test is χ2

0.95,38 = 24.9.

The results clearly reject the linear hypothesis.
The test statistics also suggest using the delay pa-
rameter d = 1 or d = 2.

With 547 observations, we only entertain the
possibilities of BTAR models with two or three
regimes, i.e., k = 2 or 3. Given p, d, and k, we
use a grid search method and select the thresholds
by minimizing the AIC values that are defined in

(7). Let Pα(zt−d) be the empirical αth percentile
of zt−d. For two-regime models, we assume that
r ∈ [P10(zt−d),P90(zt−d)]. For three-regime mod-
els, we assume that r1 ∈ [P10(zt−d),P45(zt−d)]
and r2 ∈ [P55(zt−d),P90(zt−d)]. Table 3 shows
the selected threshold values under different com-
binations of (p, d, k). It indicates that the over-
all minimum AIC is −7292.74 when k = 3, p =
9, d = 2 and r̂1 = −0.1457 and r̂2 = −0.0341.
We further refine the model by allowing different
AR orders for different regimes. The AIC selects
(p1, p2, p3) = (9, 5, 1). The final mininised AIC
value is −7334.18. Least squares estimation re-
sults of the specified model are given in Table 4.
The indicator matrices for the residual sample cross-
correlations and the residual PAM are examined,
and they do not show any model inadequacy.

Table 3. Selection of k, p, d and threshold values

k p d r̂1 r̂2 AIC

2 9 1 −0.1480 −7165.50

2 9 2 −0.0341 −7273.38

3 9 1 −0.1481 −0.0309 −7215.82

3 9 2 −0.1457 −0.0341 −7292.74

Table 4. Estimate results

The estimated coefficients Φ̂
(k)

j

(a) The first regime (k = 1, p1 = 9)

Lag(j) 0 1 2 3 4 5(
0.02
0.00

) (
0.02 0.06
0.24 −0.06

) (
0.03 0.05
0.15 −0.07

) (
0.18 0.02
0.22 −0.06

) (
0.11 −0.13
0.10 −0.28

) (
0.38 −0.73
0.18 −0.18

)
Lag(j) 6 7 8 9(

0.30 −0.16
−0.07 0.42

) (
0.60 −0.59
0.36 −0.55

) (
0.11 0.06
−0.03 0.13

) (
0.36 −0.25
0.19 −0.23

)
(b) The second regime (k = 2, p2 = 5)

Lag(j) 0 1 2 3 4 5(
0.00
0.00

) (
0.18 −0.20
0.12 −0.10

) (
−0.34 0.46
−0.09 0.15

) (
0.08 0.01
0.04 0.02

) (
0.00 −0.02
0.02 −0.01

) (
0.17 −0.34
0.12 −0.24

)
(c) The third regime (k = 3, p3 = 1)

Lag(j) 0 1(
0.00
0.00

) (
0.08 0.09
0.10 0.11

)
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4. DISCUSSION AND CONCLUSION

In this paper, we build a BTAR model for analyzing
Australian interest rate data. The series under study
are 2-year and 15-year government bonds, repre-
senting short-term and long-term series in the term
structure of interest rates. The 3-month moving-
average spread is employed as the threshold vari-
able. It provides a proxy to the status (expansion
versus contraction) of the Australian economy. Our
empirical results show that threshold-type nonlin-
earity clearly exists in the vector series. A BTAR
model is fitted. In fact the final model has an eco-
nomic implication which can be explained easily. In
regime 1, which presents economic expansion peri-
ods with short-term interest rate much lower than
the long-term rate, the two interest growth series
have longer interaction memory (p1 = 9 in the fi-
nal BTAR model). In regime 2, which represents
stable economy, their interaction memory maintains
at a moderate level (p2 = 5). In regime 3, which
represents economic slowdown or recession, the in-
terest growth rate process has a much shorter mem-
ory (p3 = 1).

Due to significant financial deregulation that
occurred in Australia in the 1970s and 1980s, it is
possible that there has been some structural change
in the process. International macroeconomics sug-
gest that the change in the exchange rate regime
from a fixed, to pegged regime and then to a float-
ing regime is also likely to have some impact on
the interest rate determination mechanism. In or-
der to study the robustness of the results in this pa-
per, we apply the BTAR modelling procedures to
three sub-periods: (a) January 1957 to December
1969 (n = 155), (b) January 1970 to December
1989 (n = 240), and (c) January 1990 to August
2002 (n = 142). BTAR-type nonlinearity is found
in each sub-period. However, the optimal lag, de-
lay and autoregressive parameters are different from
sub-period to sub-period.

5. REFERENCES

Bartlett, M. S., Further aspects of the theory of multiple
regression, Proceedings of the Cambridge Philo-
sophical Society, 34, 33-40, 1938.

Box, G.E.P., and G.M. Jenkins, Time Series Analysis:
Forecasting and Control, 2nd ed. Holden-Day, San
Francisco, 1976.

Chappell, D., J. Padmore, P. Mistry, and C. El-
lis, A threshold model for the French Franc/

Deutschmark exchange rate, Journal of Forecast-
ing 15, 155-164, 1996.

De Gooijer, J.G., and Vidiella-i-Anguera, A., Nonlinear
stochastic inflation modelling using SEASETARs,
Insurance: Mathematics and Economics 809, 1-
16, 2003.

International Monetary Fund, International Financial
Statistics, CD-ROM Edition, 2003.
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