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Abstract: This paper examines whether or not a discrete-time econometric test for nonlinearity in mean
may be used in cases where the data are believed to be generated by a continuous-time model. It is
demonstrated that appropriate bootstrapping techniques are required to yield a test statistic with sensible

statistical properties.
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1. INTRODUCTION

The notion of financial data as being generated
by a continuous-time process is commonplace in
theoretical finance. The estimation of the
parameters of such processes from discretely
observed data, on the other hand, has received
relatively less attention. In particular, it is now
known that straightforward application of
discrete-time methods yield biased parameter
estimates in many interesting situations.
Subsequently a vast new literature has evolved in
this area [see, Sundaresan, 2000]. The major
remaining area which now needs to be explored
concerns testing. It is important to ascertain
whether specification tests, derived from the
assumption of discretely observed and generated
data, can be adapted to deal with the assumption
of continuously-generated data. This paper
examines only one potentially important aspect
of specification testing, namely, the detection of
nonlinearity in mean. The difficulties associated
with the application of discrete-time nonlinearity
tests to continuously-generated data will be
highlighted. It will also be demonstrated that
suitable bootstrapping can play a major role in
alleviating these problems. These techniques will
then be illustrated with reference to the 7-day
Eurodolllar spot deposit rate.

2, INFERENCE BASED ON DISCRETE
OBSERVATIONS

Most tests for nonlinearity in mean, as defined in

Lee et al. [1993]), are based on the null

hypothesis that the data-generating process is of
the form

¥, =0, + A(L)y, + B(L)E, 1)

g ~N(0,0%) @

where {y,}#=1..T is a sequence of discretely-
generated and sampled observations and A(L)
and B(L) are suitably chosen lag polynomials.
Tests for nonlinearity assess the significance of
additional variables

Z, =804 Y 2V i)

where g()is some nonlinear transform of its
argument. In this paper the so-called V23 test,
due to Teridsvirta ef al. [1993], is chosen to test
for nonlinearities. Here g(-) represents all unique
second and third order cross products of
(¥, 13-+, &) with their joint significance tested
by means of a standard F-test. For example, if
{»,}is a Markov process and A(L)=c,[*",
then

Ely |y, ]=0n+ay,.
In this special case the vector g(°) reduces

g0)-05Ly). :

In continuous time, a Markov process is usually
described by the stochastic differential equation

(SDE)

dy=pu(y)+o(y)dw , €)]
where dW is the increment of a standard Wiener
process and u(y)and o(y)are the drift and
diffusion functions respectively. The properties
of the discrete-time expectation, E[y(f)|y(s)],
s<t, of the state variable may be examined by
using the concept of infinitesimal generators.
The infinitesimal, or Dynkin, operator [see
Campbell et al. 1997] is the time derivative of a
conditional expectation of some function ¢(y).

* By Ito’s Lemma

dp(y) =" (udr +6dW)+%¢"(pdt+adW)’

=(¢'u+%¢"a’ )Jt+¢'adW

and hence
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which is the Dynkin operator for diffusion
processes of type (3). Now consider
¢(») = y and let the drift be given by

H»)=PBy+By.
It follows directly that ¢'(y)=1and ¢"(y)=0
so that
‘d%= E[B,+By]=B, +E[B,y]

which is a first-order differential equation in
ETy] . The second-order generator for the case of
linear drift may be derived as follows

Az¢=A(A¢)=E[(A¢)'u+§(A¢)"a’]

=E[Bu]=E,[B.(Bo+ B¥)]
= ﬁlﬂo + plzy

Indeed it may be verified that higher-order

generators are given by

A'9=B"'B+By @
It is now possible to derive the expecta'tion of
y(¢) formed at time s, where s <¢. One way to
obtain a tractable expression for E,[y(f)] is to
use the Taylor-series approximation

£, [0l o] 220,
LEE [y(s)](,_s)z
31! daE [y(s)]( )
=, [y(s)]+A¢(t—s)

+—A 0(t-s) +— A’tp(t s) +..

After makmg the slmphfymg assumption that
(t—s)=1and repeated substitution for
A"¢ using (4), this expectation becomes

E,[y0]- %)= (B, + By(®)+; (ﬂ.,ﬂ.+ﬁ. ¥(s))

+§(ﬁ.,p,’+ﬁ.’y(s))+...

or

E, [.V(t)]')’(s) =B, (1+'21—!ﬂ| +%ﬂ,z +]

1, 1.,
+(p, +Eﬁ' +§ﬂ. +...]y(s).

Further recognize that
- 1o 10
e —1+pl+zpl +5pl +... -

and therefore
E, Y]~ ) = (¢* -1) y(s)- ’;"( &).(5)

This is an important result, since it demonstrates
that the expected change of discretely-observed,
but continuously-generated data can be
represented as a discrete-time ARMA model.
Note, however, that at this point no verifiable
general claim can be made as to the properties of
the residuals, particularly the assumption of
constant variance. Indeed, analysis of the
residuals needs to be done with reference to
specific stochastic processes.

Arguably the most popular continuous-time
process is the geometric Brownian motion,
which forms the core of the popular Black-
Scholes model for the pricing of stock options, It
is well known that the continuously-
compounded returns of this process can be
represented in the form specified by (1) and
(2). The focus of this paper, however, is on
interest-rate processes that are potentially
stationary and a more appropriate model,
therefore, is the Omstein-Uhlenbeck (OU)
process
dy =x(0 - y)dt+cdW ,

with 8 being the mean to which the process
reverts at rate x . The exact discretisation of the
OU process is known to be

=0(1-e™)+e*y,_ +¢ € ~N(0,062)

o
o;=0" (—1 21

This is of course a special case of (5) with
B, =x0 and B, =—x . The discretisation fits the
framwork of (1) and (2) by setting
o, =0(1-¢™), A(L)=€e™L and B(L)=1, and
recognizing t the residuals are normally
distributed with constant variance. One caveat,
however, should be noted. If the speed of
adjustment parameter is zero, the process
becomes nonstationary and statistical inference
in terms of the V23 test cannot be based on
standard distributional theory.

Possibly the most popular stochastic process for
modeling interest rates is due to Cox, Ingersoll
and Ross [1985], and is given by

dy =x(0—y)dt +0.\[ydWw .
This CIR process is a special case of the so-
called CKLS model [Chan et al. 1992] given by

=x(0-y)dt+oydWw .

In both the CIR and CKLS models the linear
ARMA model, (1), is an appropriate

. representation of the mean. On the other hand, as
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long as y>1, the volatility of the discrete
residual, €, , will be increasing in the level of the
state variable, y,. This invalidates the use of
standard statistical inference in the V23 testing
procedure, which is based on the assumption of
constant residual variance,

3. TESTING IN CONTINUOUS MODELS

It has been claimed that the discrete ARMA
approximation (1) and (2) of a continuous. SDE
is appropriate when the underlying process is
either a geometric Brownian motion or a mean
reverting (x >0) OU process. For the CKLS
model difficulties in the application of standard
tests are likely to be encountered, due to the non-
constancy of the variance in the discrete
approximation. To support this conjecture a
Monte Carlo experiment ig conducted and size
results for the V23 test for non-linearity in mean
are reported.

Data for three different stochastic processes are
generated and tested for non-linearity in mean.
The first two models, OU and QU_NUR are
variants of the Omstein-Uhlenbeck process with
x=0.8 and 0.002 respectively, 6=0.1 and
6 =0.006. The second model with x =0.002
represents very weak mean reversion, making
{7} a near-unitroot process. The third
simulation is a CIR model with x=0.21459,
0 =0.08571 and ¢ =0.0783. The V23 test is
used to test the null hypothesis
Hy: Ay, =0 +oyy,  +E,

based on the assumption that g() - (y?,,5,)-
Of course, all the simulated models have linear
drift and therefore comply with the null
hypothesis. The empirical size of the test statistic
for sample size of 250 and based on 5000
repetitions of each experiment is reported in
Table 1.

Table 1. Empirical size in 5000 repetitions of
the V23 test for various linear continuous-time
processes with sample size of 250.

DGP
Significance ou OU_NUR CIR
Level
0.01 0.007 0.035 0.037
0.05 0.042 0.124 0.134
0.10 0.088 0.215 0.232

It is obvious, that the V23 test only has the
correct size when the data generating process is
an OU process with significant drift. When the
drift in the OU model is almost negligible,
representing the near-unit root case, the V23 test

over-rejects the null hypothesis. Due to the non-
stationarity of the data the test no longer has a
standard F- distribution, a result analogous to the
non-standard distribution of t-tests in Dickey-
Fuller regressions. The size distortion in the case
of the CIR process is due to the
heteroscedasticity in the discretised residuals,
which is now a well-known phenomeon.

This problem is likely to be exacerbated in
practice as more complex volatility functions
than the one in the CKLS process have been
proposed for interest rate data. Some extend the

* CKLS model by introducing a second stochastic

factor, stochastic volatility [Andersen and Lund,
1997], others, most notably Ait-Sahalia [1996],
specify a more state-dependent form for
volatility. The next section takes up the second
of these approaches with a view to demonstrating
that the size distortion may be overcome by use
of a suitable bootstrapping technique.

4. BOOTSTRAPPING COMPLEX
VOLATILITY MODELS

Ait-Sahalia [1996] (AS) proposes the following
non-linear model for US Eurodollar interest rates

dy = (y)dt +o(y)dw
2y =a, '*'“1)""“2)’2 +a,ly ©)

o’()=b,+by+by"

Although this specification has been the subject
of recent debate [see, for example, Chapman and
Pearson, 2000, and Hurn and Lindsay, 2001], it
remains a useful example of a nonlinear SDE.
For the purposes of the simulation experiments
in this section, both a linear version (ASI) and
the unrestricted form of the model (ASII), as in
equation (6) are used. Note that the ASI model is
linear in drift but has exactly the same diffusion
function as ASII. The ASII model is exactly as
reported in AS, where the volatility function is
quadratic in the state variable with minimum at
y=0.11. The parameter values used in the
experiments are either obtained from a simple
OLS regression using the Eurodollar interest rate
data or are in fact the values given in Ait-Sahalia
[1996].

A bootstrapping mechanism capable of dealing

~ with state-dependent volatility is the pair-

bootstrap algorithm. Consider the structural
relation

X =7'W, +§, g~ N(O,O'Z(W‘)) )
where the residual term is independent but not
identically distributed, x, is a scalar, ya (kx1)
parameter vector and w, a (kx1) vector of
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independent variables. In particular, the residual
variance is a function of the exogenous variables
w,. Bootstrap sequences of {x,w,}, denoted
x',w'}, t=1...T, can be generated {Flachaire,
999] by first estimating ¥ in (7), defining
£- x, —;'w,
and then re-sampling pairs (w;,€ ) and
generating
x = 7 'W +E
This approach is unlikely to work for the type of
heteroskedasticity encountered in either the
CKLS or AS models. A simple application of the
pair bootstrap could not yield a set of realisations
which captured the autoregressive nature of the
original model. It is clear some other
bootstrapping approach is needed.

The problem of resampling from a residual
distribution, characterised by E[g, |x,_,]=0 and
E[s,2 | , ,]=¢r,2 (x,;) where the functional
dependence in the volatility is unspecified, is
closely related to the problem of parameter
estimation in the presence of heteroscedasticity
of an unknown form. To tackle the latter, several
approaches have been proposed [Pagan and
Ullah, 1999]. The favoured approach to
parameter estimation under these conditions is to
apply a  generalized-least-squares (GLS)
estimate. With reference to equation (7), for
example, the estimator is

r=(W'Q 'W)WQ 'x ®
The (T x k) matrix Wis the matrix of
independent variables and xis the (T x 1)
dependent variable. The variance-covariance
matrix, Q, is a (T x T) matrix with diagonal
clements {0’ }and zeros elsewhere (assuming
the absence of autocorrelation). If the form of the
heteroskedasticity is unknown, the variance
function must be estimated nonparametrically
using the OLS residuals {}. Kernel estimation
and nearest-neighbour methods are two
examples. The resultant estimate for €2, when
substituted into (8)yields a semi-parametric
estimate for the parameter vector .

Returning the problem at hand, namely, that of
generating bootstrap replications of x,’}under
the null hypothesis of a linear drift structure, it is
obvious that the same principle can be applied.
First estimate the drift parameters, @, and
-oyand use the resultant squared residual
estimates to obtain a nopparametric estimate of
the volatility function o:(x,,). The bootstrap
realizations are then constructed by drawing an
appropriate starting value for xjand generate

j.x,' } recursively with & qrawn from the normal
istribution N (0,0'. (x.)].

It now remains to be demonstrated how the
variance function is estimated. The method
proposed here is an approximation by means of
orthogonal polynomials. The approximation of
an unknown function by means of orthogonal
series takes the following general form [Pagan
and Ullah, 1999]

) M
O.'Z(x‘ )= E.,W"z"(x' D19,

where z_(x,_,) is the m-th order orthogonal
basis function. Following Hurn and Lindsay
[2001], the orthogonal basis functions are the
Legendre polynomials

Z(x)=1, z(x)=x, zz(x)=%x’—%,....
The polynomials are only defined in the interval
[~1,1] and the mapping

x=[2x—(;+£)]/(;—_5),

where x and x are the maximum and minimum
values of the data, is used to map the original
observations into the required interval. In this
application, the first four Legendre polynomials
proved flexible enough to approximate the form
of the variance function. There are therefore four
parameters /...y, to be estimated using the
squared residuals obtained by fitting the linear
drift to the data. One appealing feature of this
approach is that these parameters are easily
obtained by means of a straightforward OLS
regression.

Once an estimate of the variance function is
available, the bootstrap generation process is
given by

X =ao+oux, +€ ,
where the residual & is drawn from
N(0,07(x,)). The resulting unconditional
distribution of residuals will be a mixture of
normals which can mimic some of the features
we can see in real life data, most notably
leptokurtosis. It is a well-known problem of
nonparametric estimates that inference should
not be drawn beyond the observed data region.
For that reason the re-sampling has to be
confined to the observed data range.

As this method of bootstrapping has not
previously been proposed in the literature, it is
necessary to scrutinize its empirical performance
before applying it to a real data set. A small
Monte-Carlo experiment i3 performed to
investigate the empirical size and power of the
bootstrapped-V23. Since the bootstrap tests are
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fairly computing intensive, this Monte-Carlo

experiment operates with fairly small sample
sizes (250, 500 and 1000) and a modest number
of replications (1000 for the asymptotic test and
500 for bootstrap test). The results are tabulated
in Tables 2 and 3.

From the results in Table 2 one may conclude
that there is a substantial size distortion when the
asymptotic distribution of the test is used.
Furthermore, this distortion is significantly larger
than that for the CIR process (see Table 1). By
contrast the V23 test based on the Legendre
bootstrap appears to have the correct size.

Table 2. Empirical size of the V23 test for a
process with linear mean but nonlinear variance.

ASI Model Asymptotic test
Significance | T=250 | T=500 | T=1000
0.01 0.145 | 0.296 | 0.513
0.05 0.334 | 0.506 | 0.701
0.10 0.445 | 0.620 | 0.789
Bootstrap test
0.01 0.004 | 0.008 | 0.018
0.05 0.034 | 0.052 | 0.054
0.10 0.084 | 0.088 | 0.134

Table 3. Empirical power of the V23 test fora
process with nonlinear mean and variance .

ASII Model Asymptotic test
| Significance | T=250 | T=500 | T=1000
0.01 0.260 | 0.555 | 0.898
0.05 0.460 | 0.752 | 0.956
0.10 0.575 | 0.834 | 0971
Bootstrap test
0.01 0.018 | 0.024 | 0.080
0.05 0.064 | 0.134 | 0.292
0.10 0.146 | 0.268 | 0.494

Turning now to the empirical power of the test, it
is apparent that in small samples the
bootstrapped-V23 test only has modest power to
detect the nonlinear drift in the ASII process. It
is also clear, however, that the power increases
significantly with increasing T.

5. APPLICATION TO INTEREST-RATE
DATA

Interest rates have a long history of being
modelled as continuous time processes [Chan,
1992]). While many different processes were
proposed, most of these are linear in their mean
part and possess a level-dependent volatility. The

majority of these models are nested within the
CKLS process given by

dy=x(0-y)dt+oy'dW . )
The major concern of this paper, however, is
with the functional form of the drift. As it is
specified in (9) the drift is linear, with x
determining the speed with which the process
reverts to its attractor @. This linear-drift
specification has been challenged by Ait-Sahalia
[1996] and Stanton [1997]. They argue that that
mean reversion is only relevant when the interest
rate level is either very high or very low; in the
region of the mean the process is seen to behave
like a random walk.

The approach of both AS and Stanton is based
on estimation of the underlying, potentially non-
linear drift without prior testing. The argument
here is that hypothesis tests, which do not rely on
the estimation of the alternative (nonlinear)
model, are the logical starting point for the
enquiry. Once again the V23 test will be relied
upon. Note that the method of estimating the
volatility function by means of Legendre
polynomials allows the null hypothesis to be
generalized to

dy =x(6 —y)dt+o(y)dW
where the form of the volatility function remains
unspecified for testing purposes.

The data used here are identical to Ait-Sahalia's
[1996] data set, namely, daily observations of the
7-day Eurodollar deposit spot-rate from 1 June
1973 to 25 February 1995 (5505 observations).
The V23 test was first used to test the null
hypothesis with the significance of the test
statistic being evaluated by means of its
asymptotic F-distribution. The estimated test
statistic is 24.05 with an asymptotic p-value of
zero for all practical purposes. There appears no
doubt about the nonlinearity of the interest rate
process when tested in this fashion.

Armmed with overwhelming empirical evidence
that the interest rate volatility is a function of the
interest rate level, and the simulation results
from the previous section (Table 2), however,
this conclusion appears dubious given the
substantial size distortion of the asymptotic test.
It therefore appears to be necessary to apply the
Legendre bootstrap. Figure 1 displays the
volatility function estimate using the Legendre
polynomials. The function is displayed on the
observed data range (0.02915 to 0.24333). To
avoid the pitfall of obtaining negative estimates
of variance in the region of the observed
minimum of the data, a constraint
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(¥, =V, —V, +V¥,) was introduced to ensure the
variance remained positive. This ensures that the
volatility estimate is 0 when the state variable is
0 and positive elsewhere. In order to demonstrate
that this does not alter the fundamental
characteristics of the volatility function, this
estimate is displayed (solid line) mext to the
unconstrained Legendre estimate. The qualitative
similarity between the two estimates is
immediately apparent.

When this volatility estimate is used in the
bootstrap generation mechanism, the p-value of
the V23 test is found to be 0.131. The conclusion
is therefore that there is not sufficient evidence
to reject the null hypothesis of linearity,
constituting a substantial turnaround from the
conclusion based on the asymptotic distribution.
The question might be asked whether this is due
to a lack of power of the testing procedure.
Again the experimental evidence provided earlier
suggests that this is wunlikely. While no
simulations with a sample size of 7=5505, were
performed (due mainly to the computational
burden), the available evidence suggests that the
bootstrapped-V23 test would have good power in
samples of this size and against this type of
nonlinear process.
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Figure 1. Estimate of the volatility function
using Legendre polynomials: unconstrained
(dashed line), constrained (solid line).

6. CONCLUSION

Several conclusions can be drawn from this
work. In some special cases discrete-time
specification tests can simply be applied to
discrete  observations of continuous-time
processes. More generally, however, consistent
statistical inference is difficult because the

complex  diffusion functions commonly
encountered in financial data introduce a size
distortion in test procedures that are based on
asymptotic distributions. The approximation of
the diffusion function by means of Legendre
polynomials enabled a bootstrapping procedure
to be devised, which cures the size distortion.
The test should only be regarded as an
appropriate diagnostic tool, however, when the
diffusion function lends itself to being modelled
in this way.
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